
TRANSPORTATION ANALYSIS SIMULATION SYSTEM
(TRANSIMS)

Version: TRANSIMS-LANL-1.0

VOLUME 3 – FILES

28 May 1999

LA-UR 99-2579

TRANSIMS-LANL-1.0 – Files – May 1999 Page 2
LA-UR – 99-2579

COPYRIGHT, 1999, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA. THIS SOFTWARE WAS PRODUCED
UNDER A U.S. GOVERNMENT CONTRACT (W-7405-ENG-36) BY LOS ALAMOS NATIONAL LABORATORY,
WHICH IS OPERATED BY THE UNIVERSITY OF CALIFORNIA FOR THE U.S. DEPARTMENT OF ENERGY. THE U.S.
GOVERNMENT IS LICENSED TO USE, REPRODUCE, AND DISTRIBUTE THIS SOFTWARE. NEITHER THE
GOVERNMENT NOR THE UNIVERSITY MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY
LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 3
LA-UR – 99-2579

TRANSIMS

Version: TRANSIMS-LANL-1.0

VOLUME 3 – FILES

28 May 1999

LA-UR 99-2579

The following persons contributed to this document:
C. L. Barrett*

R. J. Beckman*
K. P. Berkbigler*

K. R. Bisset*
B. W. Bush*
S. Eubank*

J. M. Hurford*
G. Konjevod*

D. A. Kubicek*
M. V. Marathe*
J. D. Morgeson*

M. Rickert*
P. R. Romero*
L. L. Smith*

M. P. Speckman**
P. L. Speckman**

P. E. Stretz*
G. L. Thayer*

M. D. Williams*

* Los Alamos National Laboratory, Los Alamos, NM 87545
** National Institute of Statistical Sciences, Research Triangle Park, NC

TRANSIMS-LANL-1.0 – Files – May 1999 Page 4
LA-UR – 99-2579

Acknowledgments

This work was supported by the U. S. Department of Transportation (Assistant Secretary for
Transportation Policy, Federal Highway Administration, Federal Transit Administration), the U. S.
Environmental Protection Agency, and the U. S. Department of Energy as part of the Travel Model
Improvement Program.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 5
LA-UR – 99-2579

CONTENTS

1. INTRODUCTION ..8

2. SYNTHETIC POPULATION...9

2.1 TERMS ... 9
2.2 FILE FORMAT ... 9
2.3 INTERFACE FUNCTIONS .. 11
2.4 DATA STRUCTURES.. 12
2.5 FILES ... 13
2.6 CONFIGURATION KEYS... 14
2.7 EXAMPLES ... 15

3. ACTIVITIES ..16

3.1 TERMS ... 16
3.2 FILE FORMAT ... 16
3.3 INTERFACE FUNCTIONS .. 18
3.4 DATA STRUCTURES.. 20
3.5 FILES ... 22
3.6 CONFIGURATION KEYS... 23
3.7 EXAMPLES ... 24

4. VEHICLE ..25

4.1 TERMS ... 25
4.2 FILE FORMAT ... 25
4.3 INTERFACE FUNCTIONS .. 26
4.4 DATA STRUCTURES.. 27
4.5 FILES ... 28
4.6 EXAMPLES ... 28

5. PLAN ..30

5.1 TERMS ... 30
5.2 FILE FORMAT ... 30
5.3 INTERFACE FUNCTIONS .. 34
5.4 DATA STRUCTURES.. 34
5.5 UTILITY PROGRAMS ... 35
5.6 FILES ... 38
5.7 CONFIGURATION KEYS... 39
5.8 EXAMPLES ... 40

6. TRANSIT ...41

6.1 TERMS ... 41
6.2 FILE FORMAT ... 41
6.3 INTERFACE FUNCTIONS .. 42
6.4 DATA STRUCTURES.. 43
6.5 FILES ... 43
6.6 CONFIGURATION KEYS... 44

TRANSIMS-LANL-1.0 – Files – May 1999 Page 6
LA-UR – 99-2579

6.7 EXAMPLES ... 44

7. NETWORK ..45

7.1 TERMS ... 45
7.2 FILE FORMAT ... 47
7.3 INTERFACE FUNCTIONS .. 69
7.4 DATA STRUCTURES.. 80
7.5 UTILITY PROGRAMS ... 91
7.6 FILES ... 92
7.7 CONFIGURATION KEYS... 92
7.8 EXAMPLES ... 93

8. SIMULATION OUTPUT ..105

8.1 TERMS ... 105
8.2 FILE FORMAT ... 105
8.3 OUTPUT FILTERING .. 113
8.4 INTERFACE FUNCTIONS .. 114
8.5 DATA STRUCTURES.. 124
8.6 UTILITY PROGRAMS ... 131
8.7 FILES ... 132
8.8 CONFIGURATION KEYS... 133
8.9 EXAMPLES ... 137

9. EMISSIONS ESTIMATOR..148

9.1 TERMS ... 148
9.2 FILE FORMAT ... 148
9.3 UTILITY PROGRAMS ... 153
9.4 FILES ... 154
9.5 EXAMPLES ... 154

10. ITERATION DATABASE..162

10.1 TERMS ... 162
10.2 FILE FORMAT ... 162
10.3 INTERFACE FUNCTIONS .. 162
10.4 DATA STRUCTURES .. 169
10.5 UTILITY PROGRAMS ... 170
10.6 FILES.. 170

11. INDEXING..171

11.1 TERMS ... 171
11.2 USAGE ... 171
11.3 INTERFACE FUNCTIONS .. 173
11.4 DATA STRUCTURES .. 178
11.5 UTILITY PROGRAMS ... 181
11.6 FILES.. 183
11.7 EXAMPLES ... 183

12. VISUALIZATION ..185

TRANSIMS-LANL-1.0 – Files – May 1999 Page 7
LA-UR – 99-2579

12.1 TERMS ... 185
12.2 FILE FORMAT ... 185
12.3 UTILITY PROGRAMS ... 186
12.4 FILES.. 187

13. CONFIGURATION ..188

13.1 TERMS ... 188
13.2 FILE FORMAT ... 188
13.3 INTERFACE FUNCTIONS .. 188
13.4 DATA STRUCTURES .. 189
13.5 UTILITY PROGRAMS ... 189
13.6 FILES.. 189
13.7 CONFIGURATION KEYS ... 190
13.8 EXAMPLES ... 190

14. LOGGING ..197

14.1 TERMS ... 197
14.2 INTERFACE FUNCTIONS .. 197
14.3 FILES.. 198
14.4 EXAMPLES ... 198

15. REFERENCES ..199

TRANSIMS-LANL-1.0 – Files – May 1999 Page 8
LA-UR – 99-2579

1. INTRODUCTION

The Transportation Analysis and SIMulation System (TRANSIMS) is sponsored by the U.S.
Department of Transportation, the Environmental Protection Agency, and the U.S. Department of
Energy. Los Alamos National Laboratory is leading this major effort to develop new, integrated
transportation and air quality forecasting procedures necessary to satisfy the Intermodal Surface
Transportation Efficiency Act and the Clean Air Act and its amendments.

This document provides specifications for the complete set of files used by TRANSIMS,
descriptions of the C programming language interface functions* used to read and write these files,
and examples of the files. Figure 1 below shows the major files used in TRANSIMS and their
relationship with the TRANSIMS software modules. All except the iteration database and index
files are in standard ISO text format. The C interface libraries provide functions for reading and
writing the files, and data structures in which records from the files can be stored in memory.

In
pu

t F
ile

s
M

od
ul

es
In

pu
t &

 O
ut

pu
t F

ile
s

Population
Synthesizer

Traveler
Survey

Synthetic
Population

Census

Route
Planner

Activity

Activity
Generator

Output
Visualizer

Traffic Micro-
simulator

Emissions
Estimator

Network

Traveler
Plans

Transit

Vehicle Simulation
Output

Emissions
Inventory

Arbitrary Box
Data

MODELS3
Database

Air Quality
Surveys

Figure 1: Interrelationship between TRANSIMS data files and software modules. The files
appearing in the top row are only used as input by software modules whereas the files
appearing in the bottom row are output by one module and input by one or more other
modules.

NOTE: The symbol * is used to indicate items that apply to the June release only.

* These functions are callable from most C++, FORTRAN, and PASCAL language implementations, too.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 9
LA-UR – 99-2579

2. SYNTHETIC POPULATION

The TRANSIMS synthetic population system is designed to produce populations (family
households, non-family households, and group quarters) that are statistically equivalent to actual
populations when compared at the level of block group or higher. The methodology used by this
system is described in Reference Volume 2— Software, Part 1— Modules, Section 1. The inputs to
the software are U.S. Census Bureau data (STF3A and PUMS) and MABLE/GEOCORR data.
Census Bureau STF3A and PUMS data formats are commonly used and are available on CD-
ROM from the Census Bureau— these data inputs will not be described in any detail in this
document. MABLE/GEOCORR data is relatively new, and is described in Reference Volume 2—
Software, Part 1— Modules, Section 1.1.

2.1 Terms

Population Persons grouped in households.

Demographics Characteristics of a household or person.

Tract U.S. Census Bureau tract number.

Block Group U.S. Census Bureau block group number.

PUMS U.S. Census Bureau Public Use Microdata Sample.

PUMS Household ID The PUMS household ID number from which the synthetic population
was derived.

TRANSIMS ID Unique number assigned to each household and person. Must be greater
than zero.

Home Location The home location of the household and all persons in the household.
This number is the ID of a TRANSIMS activity location and is unique for
each TRANSIMS transportation network.

2.2 File Format

The synthetic population file contains two header lines, followed by the data lines.

2.2.1 Header Lines

The first line of the file contains the household demographic and user data information. The
second line of the file contains person demographic information.

2.2.1.1 Format

The format of the lines is:

<text>: <description demog/data1> ... <description demog/dataN>

TRANSIMS-LANL-1.0 – Files – May 1999 Page 10
LA-UR – 99-2579

The <text> entry may be any text comment that is meaningful to the user. The <text> entry
MUST be followed by a colon (:). A single word description of each of the optional household
demographics in the file follows the colon. Each optional household data item that is present in the
household data lines of the file must have a single word description in the household header line
(line 1 of the file). Each person demographic that is present in the person data lines of the file must
have a single word description in the person demographic line (line 2 of the file). The single word
description must not contain white space.

2.2.1.2 Example

Household Demographics: PUMSHH R18UNDR RWRKR89 RHHINC
Person Demographics: AGE RELAT1 SEX WORK89

The household data lines in a file with this header will have four optional household demographic
values (PUMSHH, R18UNDR, RWRKR89, and RHHINC). The person data lines in a file with
this header will have four person demographic values (AGE, RELAT1, SEX, and WORK89).

2.2.2 Data Lines

The data for a single synthetic household span multiple lines of the synthetic population file.

2.2.2.1 Format

The first line of a household record contains the household data:
<TRACT ID> <Blck Grp ID> H <TRANSIMS HH ID> <# persons> <# vehicles> <Home location> [<HHData1> ... <HHData2>]

<TRACT ID> and <Blck Grp ID> are the census tract and block group numbers. The tract
numbers are represented as an integer with the following characteristics. Tract number 1 or 1.00 is
represented as 000100. Tract number 1.01 is represented as 000101. The block groups retain
their integer value.

The home location is the ID of the home activity location on a TRANSIMS network. A value of -1
may be used if the home location is not known yet. Every household must eventually be assigned a
home location of a TRANSIMS activity location before using TRANSIMS modules.

Following the household data are N lines, where N = number of persons in the household, of
person data.

<TRANSIMS HH ID> P <TRANSIMS Person ID> [PersonDemog1> ... <PersonDemogN>]

The household and person demographics/data in the file, both number and type of the data, depend
on the demographics and data used to generate the population.

2.2.2.2 Example

Household 1000 with four persons, two autos, home location of 1253, and demographics of
PUMSHH (17643), R18UNDR (1), RWRKR89 (3), and RHHINC (38800). Person
demographics for each member of the household are AGE, RELAT1, SEX, and WORK89.

Household Demographics: PUMSHH R18UNDR RWRKR89 RHHINC
Person Demographics: AGE RELAT1 SEX WORK89

TRANSIMS-LANL-1.0 – Files – May 1999 Page 11
LA-UR – 99-2579

00001 00002 H 1000 4 2 1253 17643 1 3 38800
1000 P 101 38 0 0 1
1000 P 102 36 1 1 1
1000 P 103 7 2 1 0
1000 P 104 4 2 1 0

2.3 Interface Functions

The synthetic population subsystem has C structures and utility functions that are used to read and
write synthetic population data from TRANSIMS synthetic population files.

The function getNextSyntheticHH() reads a synthetic household from the population file. The
function stores the information in a static data structure (SyntheticHHData) and returns a
pointer to the static data. The SyntheticHHData structure cannot be modified by the calling
program. The data should be copied if it needs to be changed. The functions
writeSyntheticPopHeader() and writeSyntheticHH() are used to create a TRANSIMS
synthetic population file.

2.3.1 moreSyntheticHH
Signature: int moreSyntheticHH(FILE* const fp)

Description: Boolean function used to control iteration through the synthetic population
file.

Argument: fp – FILE* for the synthetic population file that must be open for reading.

Return Value: 1 if not at end of synthetic population file.
0 if EOF has been reached.

2.3.2 getNextSyntheticHH
Signature: const SyntheticHHData* getNextSyntheticHH(FILE* const fp)

Description: Reads a synthetic household from the synthetic population file. Parses and
converts the values from the file and stores them in the static
SyntheticHHData structure.

Argument: fp – FILE* for the synthetic population file that must be open for reading.

Return Value: The address of a static SyntheticHHData structure containing the data read
from the file. Returns NULL on error.

2.3.3 writeSyntheticPopHeader
Signature: int writeSyntheticPopHeader(FILE* const fp, char*

hh_header, char* p_header)

Description: Writes the header lines in the synthetic population file.
The format of the line is:
<text>: <demog1> <demog2> … <demogN>

TRANSIMS-LANL-1.0 – Files – May 1999 Page 12
LA-UR – 99-2579

Example:
Household Demographics: PUMSHH R18UNDR RWRKR89 RHHINC
Person Demographics: AGE RELAT1 SEX WORK89

Argument: fp – pointer to synthetic population file that must be open for writing with
the file pointer positioned at the beginning of the file.
hh_header – string containing the household header information.
p_header – string containing the person header information.

Return Value: 1 on success.
0 on error.

2.3.4 writeSyntheticHH
Signature: int writeSyntheticHH(FILE* const fp, const

SyntheticHHData* hh)

Description: Writes the given SyntheticHHData into the given synthetic population file.

Argument: fp – FILE* to the synthetic population file that must be open for writing.
data – address of a SyntheticHHData structure containing the data to be
written.

Return Value: 1 on success.
0 on error.

2.4 Data Structures

2.4.1 SyntheticPersonData

This structure is used to hold synthetic person information.

typedef struct synPersonData_s
{
/** TRANSIMS Person ID. **/
INT32 fPersonID;

/** Array of person demographic information. **/
INT32 *fPersonDemographics;

} SyntheticPersonData;

2.4.2 SyntheticHHData

This structure is used to hold synthetic household information.

typedef struct synHHdata_s
{

/** The Census Tract ID of the household. **/
INT32 fTract;

TRANSIMS-LANL-1.0 – Files – May 1999 Page 13
LA-UR – 99-2579

/** The Block group ID of the household. **/
INT32 fBlockGroupID;

/** The TRANSIMS Household ID. **/
INT32 fHHId;

/** The number of persons in the household. **/
int fNumberPersons;

/** The number of vehicles owned by the household. **/
int fNumberVehicles;

/** The home location of the household – a TRANSIMS activity
 * location ID.
 */
INT32 fHomeLocation;

/** Number of data items in the household demographics/data array. **/
int fNumberHHDemographics;

/** Array of household demographic/data information. **/
INT32 *fHHDemographics;

/** Number of demographics in the person demographics array. **/
int fNumberPersonDemographics;

/** Array of synthetic person records, one for each member of the
 * household.
 * The number of valid entries in this array is given by
 * the fNumberPersons field.
 */
SyntheticPersonData *fPersons;

} SyntheticHHData;

2.5 Files

Table 1: Synthetic population library files.

Type File Name Description
Binary Files libTIO.a TRANSIMS Interfaces library
Source Files synpopio.h Defines synthetic population data structures and interface functions

synpopio.c Synthetic population interface functions source file

TRANSIMS-LANL-1.0 – Files – May 1999 Page 14
LA-UR – 99-2579

2.6 Configuration Keys

Table 2 below lists the TRANSIMS configuration file keys that specify the location of synthetic
population data files.

Table 2: Synthetic population file configuration keys.

Configuration Key Description
POP_NUMBER_HH The number of households to be generated.
POP_BASELINE_FILE Baseline synthetic population files— not located on a transportation

network.
POP_LOCATED_FILE Synthetic population file containing population located on a specific

transportation network.
POP_STARTING_VEHICLE_ID The first vehicle ID to be assigned. Other vehicles will be

numbered sequentially from this starting number.
POP_STARTING_HH_ID The first household ID to be assigned. Other synthetic households

will be numbered sequentially from this number.
POP_STARTING_PERSON_ID The first person ID to be assigned. Other synthetic persons will be

numbered sequentially from this number.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 15
LA-UR – 99-2579

2.7 Examples

This example program reads a synthetic population file, then writes the synthetic population data
to an output file.

#include <stdio.h>
#include <string.h>
#include <IO/synpopio.h>

main(int argc, char *argv[])
{

FILE *infp;
FILE *outfp;
const SyntheticHHData *h = NULL;
char *hdr1 = "Household Demographics: PUMS PUMSHHID RWRKR89 RHHINC";
char *hdr2 = "Person Demographics: AGE SEX WORK89";
int count = 0;

if (argc < 3) {
fprintf(stdout, "Usage: prog <input file> < output file>\n");
exit(0);

}

infp = fopen(argv[1], "r");
if (!infp) {

fprintf(stdout, "Failed to open input file %s\n", argv[1]);
exit(0);”

}

outfp = fopen(argv[2], “w”);
if (!outfp) {

fprintf(stdout, “Failed to open output file %s\n”, argv[2]);
exit(0);

}
writeSyntheticPopHeader(outfp, hdr1, hdr2);

while (moreSyntheticHH(infp)) {
h = getNextSyntheticHH(infp);
count++;
writeSyntheticHH(outfp, h);

}
fprintf(stdout, “Read/Wrote %d households\n”, count);
fclose(infp);
fclose(outfp);

}

TRANSIMS-LANL-1.0 – Files – May 1999 Page 16
LA-UR – 99-2579

3. ACTIVITIES

This section gives the protocol for the interaction of the TRANSIMS activity sets with the
TRANSIMS planner and microsimulation.

3.1 Terms

Activity Something that a person in a household does. Each activity has parameters
associated with it including priority, location, starting time, ending time, and
duration.

Household One or more persons with a common home location.

Location A TRANSIMS Network Activity Location.

Mode The mode type of the transportation between activities: i.e., car, bus, walk.

3.2 File Format

A population is assumed to be in place. Each household in this population has a location on the
TRANSIMS network and a unique household ID. Each person in the household also has a unique
ID. A base set of activities is generated for each household in the population. These activities are
modified by feedback from both the planner and the microsimulation.

The activity file for the base set of activities is an ASCII file containing the activity data.
Activities for a household are grouped sequentially in the activity file. Each line of the file contains
tab-delimited data fields for a single activity. Table 3 defines the meaning and format of the
activity data fields. For most fields, the entry –1 denotes an unspecified value.

The reference time is taken as 0.00 (midnight of the first day). All times are decimal numbers that
denote the number of hours from 0.00. Note that each time should be given to a minimum of two
decimal places to capture minutes and four decimal places if seconds are necessary. Each activity
has a start time, end time, and duration range. The preferred time for each of these is given in
terms of the two parameters of a beta distribution, 11)()()(−− −−= ba tULtCtf where, C is a
constant, L is the lower bound of the time, U is the upper bound, and a and b are the parameters

that specify the distribution. The mean of the distribution is
ba

a
+

 ; a=1 and b=1 gives a uniform

distribution between L and U, and the larger a and b are, the more peaked the distribution.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 17
LA-UR – 99-2579

Table 3: Activity data definitions and format.

Field Description Allowed Values
Household ID Each household has a unique household ID.

Each Group Quarters is given one household ID.
These numbers are assigned in the population
file.

integer

PersonID Each person is given a unique ID in the
population file.

integer

Activity Type Two types are fixed and should always have these
values: Home = 1, Work = 2. Definition of other
activity types may vary. Meaning of the integer
value must be specified for each activity set.

* Activity Types generated by the NISS
Activity Generator have the following meanings:
0 = home, 1 = work, 2 = shop, 3 = school, 4=
visit, 5 = other.

integer: 1 through n:
Example:
1 = Home
2 = Work
3 = Shop
4 = School
5 = Other

Activity Priority A 0 is an activity of lowest priority; a priority of
9 means the activity must be done.

integer: 0 - 9

Starting Time Lower Bound Earliest time the activity can start. decimal
Starting Time Upper Bound Latest time an activity can start. decimal
Preferred Starting Time a
parameter

The time the router will use as the best guess for
the starting time. If this number is –1, the
average of the upper and lower bounds is used.

decimal

Preferred Starting Time b
parameter

The time the router will use as the best guess for
the starting time. If this number is –1, the
average of the upper and lower bounds is used.

decimal

Ending Time Lower Bound The earliest time the activity can end. decimal
Ending Time Upper Bound The latest time the activity can end. decimal
Preferred Ending Time a
parameter

The time the router will use as the best guess for
the activity ending time. If this number is –1, the
average of the lower and upper bounds is used.

decimal

Preferred Ending Time b
parameter

The time the router will use as the best guess for
the activity ending time. If this number is –1, the
average of the lower and upper bounds is used.

decimal

Duration Lower Bound Shortest length of the activity. decimal
Duration Upper Bound Longest length of the activity. decimal
Duration a parameter The router will use this as the best guess of the

activity duration. If this number is –1, the
average of the upper and lower bound is used.

decimal

Duration b parameter The router will use this as the best guess of the
activity duration. If this number is –1, the
average of the upper and lower bound is used.

decimal

Mode Preference for Arriving
at the Activity

This number represents a grammar string that
defines the mode preference to the route planner
(wcw, wt, …). The correspondence between
integer values and possible grammar strings is
contained in an external file. The file defines
special modes for passengers in a private auto as
well as activities where no travel is done (start
and end at the same location).

integer

TRANSIMS-LANL-1.0 – Files – May 1999 Page 18
LA-UR – 99-2579

Field Description Allowed Values
Vehicle ID The vehicle ID for all activities with a mode

preference of private auto, either as driver or as
passenger. This field should be set to –1 for all
other modes.

integer

Number of Possible Locations
for Activity

The number of possible locations in the List of
Locations field if value is 1 or greater. The value
0 is not allowed. If this field is –1, the single
value in the List of Locations field is an index
into a group of activities.

-1, integer ≥ 1

List of Activity Locations If the Number of Possible Locations field is 1 or
greater, this field contains a list of activity
location IDs where an activity may take place. If
the Number of Possible Locations field is –1, this
field contains a number that is an index into a
group of activities.

integer [integer] …

 Number of Other Participants
in the Activity

The number of others in the population who
might participate and use the same transportation
(e.g., the same car). The number is 0 if the
person is to travel alone to the activity.

integer

List of Other Participants Person IDs of other participants using the same
transportation. This field should be present only
when the value of the Number of Other
Participants field is > 0. If this person is the
driver of the car, this list contains the person IDs
of the other passengers in the car. If this person
is a passenger in the car, this list contains the
person ID of the driver.

[integer] [integer] …

Activity Group Number Every activity for an individual will have a
number. Sets of activities that must be done
together will have the same number.

integer

3.3 Interface Functions

The activity subsystem has C structures and utility functions that are used to read and write
activity data from a TRANSIMS activity file. These functions assume that all of the activities for
a household are grouped sequentially in the TRANSIMS activity file.

The functions getNextActivity() and getNextHousehold() read an activity/household
from an activity file in ASCII format. The functions store the information in static data structures
(ActivityData) and return a pointer to the static data. The ActivityData structures or arrays
cannot be modified by the calling program. The data should be copied if it needs to be changed.

The functions writeActivity() and writeHousehold() accept the ActivityData
structures containing the information to be written as arguments.

The read functions provide a mechanism for iterating through the activity file reading either
individual activities or the activities for a household. The write functions can write a single
activity or a household’s activities to the file.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 19
LA-UR – 99-2579

3.3.1 moreActivities
Signature: int moreActivities(FILE * const fp)

Description: Boolean function used to control iteration through the activity file.

Argument: fp – FILE * for the activity file, which must be open for reading.

Return Value: 1 if not at end of activity file
0 if EOF has been reached

3.3.2 getNextActivity
Signature: const ActivityData * getNextActivity(FILE * const)

Description: Reads an activity from the activity file. Parses and converts the string values
from the file and stores them in a static ActivityData structure. Allocates
storage for the fOtherParticipantsList and fLocations arrays based
on data in the file.

Argument: fp – FILE * to the activity, which must be open for reading.

Return Value: The address of an unmodifiable ActivityData structure containing the
activity data from the file. Returns NULL on error.

3.3.3 getNextHousehold
Signature: const ActivityData * getNextHousehold(FILE * const fp,

 int* arraySize)

Description: Reads the activities for a household from the activity file.
Constructs an ActivityData structure for each activity in the household.
Parses the activities and stores them in an array of ActivityData
structures.

Argument: fp – FILE * to the activity file, which must be open for reading.

Return Value: An array of unmodifiable ActivityData structures that contains the
activity data for the household. Returns NULL on error. The number of
activities for the household is returned in the arraySize argument.

3.3.4 writeActivity
Signature: int writeActivity(FILE * const fp, const ActivityData

* data)

Description: Writes the given ActivityData into a line of the given activity file.

Argument: fp – FILE * to the activity file, which must be open for writing

TRANSIMS-LANL-1.0 – Files – May 1999 Page 20
LA-UR – 99-2579

data – address of an ActivityData structure containing the data to be
 written.

Return Value: 1 on success.
0 on error.

3.3.5 writeHousehold
Signature: int writeHousehold(FILE * fp, ActivityData

* data, int arraySize)

Description: Writes the activities for a household into the given file.

Argument: fp – FILE* to the activity file, which must be open for writing.
data – address of an ActivityData array containing the household
activity data to be written.
arraySize – the number of activities in the data array.

Return Value: 1 on success.
0 on error.

3.4 Data Structures

3.4.1 ActivityTimeSpec

This structure is used for activity time specifications.

typedef struct act_time_spec_s
{
/** The lower bound of the time interval. **/
REAL fLowerBound;

/** The upper bound of the time interval. **/
REAL fUpperBound;

/** The A parameter for the beta distribution. **/
REAL fAParameter;

/** The B parameter for the beta distribution. **/
REAL fBParameter;

} ActivityTimeSpec;

Each activity has a start time, end time, and duration range. The preferred time for each of these is
given in terms of the two parameters of a beta distribution, f(t)=C(t-L)a-1(U-t)b-1, where C is a
constant, L is the lower bound of the time, U is the upper bound and a and b are the parameters
that specify the distribution. The mean of the distribution is a/(a+b); a=1 and b=1 gives a
uniform distribution between L and U. Larger values for a and b result in a more peaked
distribution. If the a and/or b parameter is equal to -1.0, an average of the lower and upper bound
will be used.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 21
LA-UR – 99-2579

The reference time is taken as 0.00 (midnight of the first day). All times are decimal numbers that
denote the number of hours from 0.00. Note that each time should be given to a minimum of two
decimal places to capture minutes and four decimal places if seconds are necessary.

3.4.2 ActivityData

This structure is used to store the data for a single activity as defined by one line in the activity file.

typedef struct actdata_s
{
/** The household Id. **/
INT32 fHouseholdId;

/** The person Id. **/
INT32 fPersonId;

/** Activity type. An integer value representing
 * the activity type such as home, work, school, shopping,
 * other, wait at transit stop,
**/
INT32 fType;

/** Priority ranking of the activity in the range 0 - 9,
 * where 0 is the lowest priority and 9 means the activity
 * must be done.
**/
INT32 fPriority;

/** Integer value defining transportation mode used to arrive
 * at the activity.
**/
INT32 fModePreference;

/** The ID of the vehicle to be used when the mode preference is private
 * auto, either as a driver or passenger. Set to –1 for all other mode
 * preferences.
**/
INT32 fVehicleId;

/** The number of locations where the activity can take place.
 * This field is used to provide information about the
 * fActivityGroupIndex and fPossibleLocationsList fields.
 * A value of 1 or greater indicates that the fPossibleLocationsList
 * contains a list of locations for the activity.
 * A value of -1 indicates that the fActivityGroupIndex field
 * contains an index number into a group of activities.
**/
INT32 fPossibleLocations;

/** The number of other people that will participate in the activity
 * and use the same transportation. Value is 0 if the person is
 * traveling alone to the activity. If the value is > 0, a list
 * of the IDs of the other participants is entered in the
 * fOtherParticipantsList array.
**/
INT32 fOtherParticipants;

TRANSIMS-LANL-1.0 – Files – May 1999 Page 22
LA-UR – 99-2579

/** Number of the activity for this individual. Every activity for
 * an individual has a number. Groups of activities that must be
 * done together have the same number.
**/
INT32 fActivityGroupNumber;

/** An array of personIds for other participants in the activity
 * that will use the same transportation. There are no valid entries
 * in this array if the value of fOtherParticipants is 0.
**/
INT32 *fOtherParticipantsList;

/** Index into a group of activities (integer).
 * Used only when value of fPossibleLocations is -1.
**/
INT32 fActivityGroupIndex;

/** An array of possible locations (integer IDs) where
 * the activity will occur. Used when value of
 * fPossibleLocations is 1 or greater.
**/
INT32 *fLocations;

/** Preferred start time for the activity. The ActivityTimeSpec
 * structure contains the specification parameters for a beta
 * distribution of the preferred time.
**/
ActivityTimeSpec fStart;

/** Preferred end time for the activity. The ActivityTimeSpec
 * structure contains the specification parameters for a beta
 * distribution of the preferred time.
**/
ActivityTimeSpec fEnd;

/** Preferred duration for the activity. The ActivityTimeSpec
 * structure contains the specification parameters for a beta
 * distribution of the preferred time.
**/
ActivityTimeSpec fDuration;

} ActivityData;

3.5 Files

Table 4: Activity library files.

Type File Name Description
Binary Files libTIO.a TRANSIMS Interfaces library
Source Files actio.h Defines activity data structures and interface functions

activityio.c Activity interface functions source file

TRANSIMS-LANL-1.0 – Files – May 1999 Page 23
LA-UR – 99-2579

3.6 Configuration Keys

Table 5 below lists the TRANSIMS configuration file keys that specify the location of activity
data files.

Table 5: Activity file configuration keys.

Configuration Key Description
ACT_FULL_OUTPUT The file containing a complete activity set generated from a

population.
ACT_PARTIAL_OUTPUT The file containing activities from a partial activity generation

for specified persons.
ACT_FEEDBACK_FILE The file containing a list of travelers and associated commands

for activity regeneration.
ACT_WORK_LOC_ALPHA The alpha parameter used to generate work locations in the

simplified activity generator.
ACT_WORK_LOC_BETA The beta parameter used to generate work locations in the

simplified activity generator.
ACT_WORK_LOC_GAMMA The gamma value used to generate work locations in the

simplified activity generator.
ACT_TIME_ALPHA The alpha parameter used to generate activity times in the

simplified activity generator.
ACT_TIME_BETA The beta parameter used to generate activity times in the

simplified activity generator.
ACT_MODE_ALPHA The alpha parameter used to generate mode choice in the

simplified activity generator.
ACT_MODE_BETA The beta parameter used to generate mode choice in the

simplified activity generator.
ACT_WORK_LOCATION_OPTION The option used to select the work location algorithm in the

simplified activity generator.
ACT_MODE_CHOICE_OPTION The option used to select the mode choice algorithm in the

simplified activity generator.
ACT_HOME_HEADER The user data column header in the network activity location file

used to specify single family home locations.
ACT_MULTI_FAMILY_HEADER The user data column header in the network activity location file

used to specify multifamily home locations.
ACT_WORK_HEADER The user data column header in the network activity location file

used to specify work locations.
ACT_ACCESS_HEADER The user data column header in the network activity location file

used to specify access to transit.
ACT_TRACT_HEADER The user data column header in the network activity location file

used to specify census tract.
ACT_BLOCKGROUP_HEADER The user data column header in the network activity location file

used to specify block group.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 24
LA-UR – 99-2579

3.7 Examples

Read all of the households in the activity file, then write the activity information for the household
to another file. The data for each household is stored in an array of ActivityData structures.

#include <stdio.h>
#include <actio.h>

int main(int argc, char *argv[])
{

FILE *fp;
FILE *outfp;
int number_activities;
const ActivityData *hh;

if (argc < 3) {
fprintf(stdout, “Usage: testact <activity input file> <activity output file>\n “);
exit(0);

}

fp = fopen(argv[1], “r”);
if (fp == NULL) {

printf(“Failed to open file %s...exiting\n”, argv[1]);
exit(0);

}

outfp = fopen(argv[2], “w”);
if (outfp == NULL) {

printf(“Failed to open file %s...exiting\n”, argv[2]);
exit(0);

}

while (moreActivities(fp)) {
hh = getNextHousehold(fp, &number_activities);
if (number_activities == 0) {

fprintf(stderr, “Failed to get household\n”);
} else {

writeHousehold(outfp, hh, number_activities);
}

}

fclose(fp);
fclose(outfp);
return 0;

}

TRANSIMS-LANL-1.0 – Files – May 1999 Page 25
LA-UR – 99-2579

4. VEHICLE

This section gives the protocol for the interaction of the TRANSIMS Vehicle library with the
TRANSIMS planner and microsimulation. Private vehicles are generated and assigned to
households by the TRANSIMS population synthesizer. The activity generator assigns a set of
possible vehicles to each member of a household. Freight and transit vehicles (and the plans for
their drivers) are generated by separate utilities, but must be included in the vehicle database. The
vehicle IDs assigned by these utilities must be unique.

4.1 Terms

Vehicle Any driver must have an associated vehicle.

Vehicle Type Vehicles can be classified in several ways: by network type (e.g., definitions used
in imposing lane use or turn prohibition restrictions); by usage (e.g., transit,
private auto, carpool, jitney), which affects simulation; by performance
characteristics (e.g., length, acceleration profile); by emissions type (e.g.,
power/weight ratio). In this section, network type is considered to be the primary
type.

4.2 File Format

Fields in the vehicle file are tab- or space-delimited.

Each line of the vehicle file contains four mandatory fields:
1) household ID
2) vehicle ID
3) ID of the starting location
4) the TRANSIMS network type of the vehicle

The TRANSIMS network vehicle type must be one of the following values:
1) 1 = Auto
2) 2 = Truck
3) 4 = Taxi
4) 5 = Bus
5) 6 = Trolley
6) 7 = StreetCar
7) 8 = LightRail
8) 9 = RapidRail
9) 10 = RegionalRail

The line may contain optional integer fields whose meaning is user defined. The number of these
identifier fields may vary among different vehicle files. The number of optional identifier fields
must be the same on every line within a vehicle file. The value -1 is used as a default placeholder
value for both the starting location and optional integer fields when the values are unknown or
unused.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 26
LA-UR – 99-2579

Format

<Household ID> <Vehicle ID> <starting location> <network type> [<int 1> ... <int n>]

Example

Household 1460 has two vehicles (500100 and 500101); both start at the home location (78) and
are of network type auto (1). Two optional user-defined integer fields are present in this file. The
first field is the emissions vehicle type (10), which is the same for both vehicles. The second
integer field is an indicator of the maintenance level of the vehicle. Note that the second vehicle
(500101) has unknown/unused value (-1) for the second integer field.

1460 500100 78 1 10 30
1460 500101 78 1 10 -1

4.3 Interface Functions

The vehicle subsystem has C structures and utility functions that are used to read and write data
from a TRANSIMS vehicle file.

The function getNextVehicle() reads vehicle data from a vehicle file in ASCII format. The
function stores the information in an unmodifiable data structure (VehicleData), and returns a
pointer to the structure. Since the VehicleData structure cannot be modified by the calling
program, the data should be copied if it needs to be changed.

The function writeVehicle() takes a VehicleData structure as an argument containing the
information to be written. The getNextVehicle() function combined with the
moreVehicles() function provides a mechanism for iterating through the vehicle file reading
the vehicle data.

4.3.1 moreVehicles
Signature: int moreVehicles(FILE * const fp)

Description: Boolean function used to control iteration through the vehicle file.

Argument: fp – FILE * for the vehicle file that must be open for reading.

Return Value: 1 if not at end of vehicle file.
0 if EOF has been reached.

4.3.2 getNextVehicle
Signature: const VehicleData * getNextVehicle(FILE * const fp)

Description: Reads a line of vehicle data from the vehicle file. Parses and converts the
string values from the file and stores them in the static VehicleData
structure fVehicle.

Argument: fp – FILE * to the vehicle file, which must be open for reading.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 27
LA-UR – 99-2579

Return Value: The address of a static VehicleData structure containing the vehicle data
read from the file. Returns NULL on error.

4.3.3 writeVehicle
Signature: int writeVehicle(FILE * const fp, const VehicleData

* data){

Description: Writes the given VehicleData into a line of the given vehicle file.

Argument: fp – FILE * to the vehicle file, which must be open for writing.
data – address of a VehicleData structure containing the data to be
written.

Return Value: 1 on success.
0 on error.

4.4 Data Structures

4.4.1 VehicleData

This structure is used to store the data for a single vehicle as defined by one line in the vehicle file.

typedef struct vehdata_s
{
/** The household Id. **/
INT32 fHouseholdId;

/** The vehicle ID. **/
INT32 fVehicleId;

/** The ID starting location of the vehicle. –1 is used if
 * the starting location is unknown or to indicate that the
 * route planner should choose the starting location.
**/
INT32 fStartingLocation;

/** The TRANSIMS network vehicle type.
 * Must be one of the following values:
 * 1 = Auto
 * 2 = Truck
 * 4 = Taxi
 * 5 = Bus
 * 6 = Trolley
 * 7 = StreetCar
 * 8 = LightRail
 * 9 = RapidRail
 * 10 = RegionalRail
 * -1 = Unknown
**/
INT32 fNetworkVehicleType;

/** The number of values in the fIdentifiers array. **/
INT32 fNumberIdentifiers;

TRANSIMS-LANL-1.0 – Files – May 1999 Page 28
LA-UR – 99-2579

/** Optional array of user defined integer values.
 * The number of entries in the array is variable
 * but must be the same for every line of the file.
 * If no user-defined values are present in the file,
 * fIdentifiers will be NULL.
**/
INT32 *fIdentifiers;

} VehicleData;

4.5 Files

Table 6: Vehicle library files.

Type File Name Description
Binary Files libTIO.a The TRANSIMS Interfaces library
Source Files vehio.h Defines vehicle data structures and interface functions

vehio.c Vehicle interface functions source file

4.6 Examples
Read all of the data in the vehicle file then write the vehicle information to another file. The data
for each vehicle is stored in a VehicleData structure.

#include <stdio.h>
#include <vehio.h>

int main(int argc, char *argv[])
{

FILE *fp;
FILE *outfp;
int count = 0;
const VehicleData *veh;

if (argc < 3) {
fprintf(stdout, “Usage: testveh <veh input file> <output file>\n”);
exit(0);

}

fp = fopen(argv[1], “r”);
if (fp == NULL) {

printf(“Failed to open file %s...exiting\n”, argv[1]);
exit(0);

}

outfp = fopen(argv[2], “w”);
if (outfp == NULL) {

printf(“Failed to open file %s...exiting\n”, argv[2]);
exit(0);

}

while (moreVehicles(fp)) {
veh = getNextVehicle(fp);
if (veh == NULL) {

fprintf(stderr, “Error FAILED to get vehicle...exiting\n”);
break;

TRANSIMS-LANL-1.0 – Files – May 1999 Page 29
LA-UR – 99-2579

}
count++;
if (!writeVehicle(outfp, veh)) {

fprintf(stderr, “Failed to write vehicle %d\n”, veh>fVehicleId);
}

}

fclose(fp);
fclose (outfp);
return 0;

}

TRANSIMS-LANL-1.0 – Files – May 1999 Page 30
LA-UR – 99-2579

5. PLAN

This section gives the protocol of the TRANSIMS planner file interface with the microsimulation.

5.1 Terms

Plan A plan consists of a sequence of trips.

Trip A trip consists of a sequence of (unimodal) legs. There will be a trip between each
pair of activities specified in the activity file. There will also be a trip consisting
of a single non-transportation leg for each activity. Each trip starts and ends at an
activity location accessory as specified in the activity file.

Leg A (unimodal) leg describes a traveler’s movement through the network. A leg
must start and end at an accessory. The leg contains such information as
departure time, transportation mode, and route through the network.

Accessory See Network section below.

5.2 File Format

The TRANSIMS code supplies a library of C routines as well as a TPlan C++ object that can
read and write this format.

The format consists of a required header and a set of mode-dependent data. The header contains
information common to every kind of leg. Code that uses the plans may choose to ignore some or
all of the mode-dependent data. For example, the CA microsimulation will not simulate walking or
bicycling, but will use the estimated duration from the planner. Since the origin, destination, and
expected duration of any leg are available in the header information, the simulation does not need
any data in the mode-dependent part of a walk leg.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 31
LA-UR – 99-2579

5.2.1 Data Definitions and Format

Table 7: Plan data definitions and format.

Column Name Description Allowed Values

Traveler (Person) ID Each person is given a unique ID in the population file. integer

User Field Available to the user to set as desired. Its value is not used
internally by the simulation, but is passed to the output system for
use in filtering.

integer

Trip ID Numbers the trips for the traveler sequentially from 1. The trip ID
is not used by the simulation.

unsigned 16-bit
integer

Leg ID Numbers the legs within a trip sequentially from 1. integer

First Leg Flag Not used. boolean

Last Leg Flag Not used. boolean

Activation Time The earliest time the simulation needs to worry about this leg. It
is generally the starting time (estimated by the planner) for a leg.
For a transit leg, however, it represents the arrival time of the
passenger at the transit stop, rather than the arrival time of the
transit vehicle.

integer: seconds
since midnight

Start Accessory ID Denotes the network accessory ID of the starting location for this
leg.

unsigned long

Start Accessory Type Denotes the type of accessory of the corresponding location. It is
necessary because the IDs are not globally unique over accessories.
It should be one of:
 1) activity location
 2) parking
 3) transit stop
as defined in TNetAccessory::EType of NET/Accessory.h.

integer

enumeration

End Accessory ID As above, except it is for the destination rather than the starting
accessory.

unsigned long,
integer

End Accessory Type As above, except it is for the destination rather than the starting
accessory.

unsigned long,
integer

Duration In conjunction with Stop Time and Max Time Flag, specifies how
long this leg is expected to take.

integer: seconds

Stop Time In conjunction with Stop Time and Max Time Flag, specifies an
absolute ending time for this leg.

integer: seconds
since midnight

Max Time Flag If true, the end of this activity is best estimated as
 max(start time + duration; stop_time) .
Otherwise, use the minimum instead. In the simulation, the actual
start time is used, rather than the estimated activation time.

boolean

Driver Flag True, if the traveler is driving a vehicle on this leg. boolean

Mode Mode of travel. This, together with the driver flag, determines the
interpretation of the mode-dependent data following the header.
Currently, it must be one of:
 0 - car
 1 - transit
 2 - pedestrian

integer, enumeration

TRANSIMS-LANL-1.0 – Files – May 1999 Page 32
LA-UR – 99-2579

Column Name Description Allowed Values
 3 - bicycle
 4 - non-transportation activity
as defined in the TPlan::ETravelMode enum of
PLAN/Plan.h.

Vehicle Type Type of vehicle. Currently, it must be one of:
 0 - walk
 1 – auto
 2 – truck
 3 – bicycle
 4 – taxi
 5 – bus
 6 – trolley
 7 – street car
 8 – light rail
 9 – rapid rail
 10 – regional rail

integer, enumeration

Number of Tokens Number of white-space-separated tokens in the mode-dependent
data block (not including num_tokens itself).

integer

The plan file contains a series of records, each of which specifies a single leg of a traveler’s trip.
Each record contains the fields shown in the table above, in the order shown, separated by white
space (space(s), tab(s), and/or a single newline). The field names are not written in the data file.
There is a blank line separating each pair of records. The file is written in ASCII text. Efficiency
concerns are addressed by accessing plan files through an index. See the Index section for details.

The combination of Duration, Stop Time, and Max Time Flag allows flexible specification of
departure times. For example, attending a movie might be encoded as:

duration = 0 seconds;
stop time = 20*3600 + 30*60 = 73800;
maxTime = true;

which means, “this activity ends at 8:30 p.m., or as soon as the traveler arrives, whichever is
later.” Similarly, work might be encoded as:

duration = 8 hours;
stop time = 17*3600 = 61200;
maxTime = true;

which means “stay at work until 5:00 p.m., or eight hours after arrival, whichever is later.”
Shopping at lunch might be encoded as:

duration = 0.5 hours;
stop time = 12*3600 + 45*60 = 45900;
maxTime = false;

which means “shop for half an hour or until 12:45 p.m., whichever is earlier.”

TRANSIMS-LANL-1.0 – Files – May 1999 Page 33
LA-UR – 99-2579

5.2.2 Mode-dependent Data

Mode-dependent data is written by the TRANSIMS router and interpreted by the TRANSIMS
microsimulation.

Table 8: Mode-dependent data for a car driver.

Data Description Allowed Values
Vehicle ID Each vehicle (with its ID) available in the simulation is

listed in the vehicle database.
integer

Number of Passengers The number of passengers, not including the driver, on
this leg.

integer

List of Node IDs The nodes (in order) through which the driver’s route will
pass.

integer

List of Passenger IDs The traveler ID of each passenger to be carried on this leg. integer

Table 9: Mode-dependent data for a car passenger.

Data Description Allowed Values
Vehicle ID Each vehicle (with its ID) available in the simulation is listed in the

vehicle database.
integer

Table 10: Mode-dependent data for a transit driver.

Data Description Allowed Values
Vehicle ID Each vehicle (with its ID) available in the simulation is listed

in the vehicle database.
integer

Route ID Route IDs are specified in the transit route file. Only one route
ID is allowed per leg.

integer

List of Node IDs The nodes (in order) through which the driver’s route will pass. integer

Table 11: Mode-dependent data for a transit passenger.

Data Description Allowed Values
Route ID Traveler will board any transit vehicle whose driver’s plan matches

this Route ID.
integer

Table 12: Mode-dependent data for a pedestrian.

Data Description Allowed Values
List of Node IDs The nodes (in order) through which the traveler’s route will

pass.
integer

For activity legs, there is no mode-dependent data.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 34
LA-UR – 99-2579

5.3 Interface Functions

The plan subsystem has C structures and utility functions that are used to read and write plan data
from a TRANSIMS plan file. The plans are stored in ASCII format in a plan file. The majority of
the time required for reading a plan from disk lies in converting the ASCII representation of
numbers into another format. Thus, for efficiency in those cases where only one or two fields of a
plan record are required, we provide routines that read the record in as an ASCII string and allow
conversion of particular fields from the string, as well as routines that read the string and convert
every field.

The function getNextLeg() reads a plan record from a plan file in ASCII format. The functions
store the information in static data structures (LegData) and return a pointer to the static data.
The LegData structures or arrays cannot be modified by the calling program. The data should be
copied if it needs to be changed.

The function writeLeg() accepts the LegData structures containing the information to be
written as arguments. The read functions provide a mechanism for iterating through the plan file.
The write functions can write a single plan record to the file.

5.3.1 getNextLeg
Signature: const LegData * const getNextLeg(FILE * const fp)

Description: Reads a leg from the leg file. Parses and converts the string values from the
file and stores them in the static LegData structure fLeg. Allocates storage
for the fData array based on data in the file.

Argument: fp – FILE * to the leg file, which must be open for writing.

Return Value: The address of a LegData structure containing the leg data read from the
file. Returns NULL on error.

5.4 Data Structures

5.4.1 LegData

This structure is used for modal leg data.

typedef struct plandata_s
{
/** The TravID field. **/
UNIT32 fTravId;

/** The User field. **/
INT32 fUser;

/** The fTrip field. **/
INT32 fTrip;

/** The Leg field. **/

TRANSIMS-LANL-1.0 – Files – May 1999 Page 35
LA-UR – 99-2579

INT32 fLeg;

/** The FirstLeg field. **/
INT32 fFirstLeg;

/** The LastLeg field. **/
INT32 fLastLeg;

/** The ActivationTime field. **/
INT32 fActivationTime;

/** The StartAcc field. **/
INT32 fStartArc;

/** The StartAccType field. **/
INT32 fStartAccType;

/** The EndAcc field. **/
INT32 fEndAcc;

/** The EndAccType field. **/
INT32 fEndAccType;

/** The Duration field. **/
INT32 fDuration;

/** The StopTime field. **/
INT32 fStopTime;

/** The MaxTime field. **/
INT32 fMaxTime;

/** The DriverFlag field. **/
INT32 fDriverFlag;

/** The Mode flag. **/
INT32 fMode;

/** The VehicleType field. **/
INT32 fVehicleType;

} LegData;

5.5 Utility Programs

5.5.1 PlanFilter

PlanFilter provides sorting, merging, selection and validation of plans. It constructs two indexes
for each input and output plan file it touches, one sorted by time and the other by traveler.
Currently existing indexes are used if they are up-to-date. If the -v option is used, only valid plan
sequences are included in the indexes, and an index of invalid plans is built. All times are
measured in seconds since midnight.

Usage:

TRANSIMS-LANL-1.0 – Files – May 1999 Page 36
LA-UR – 99-2579

PlanFilter [-h] [-d] [-f] [-w] [-v netConfigFile] [-s startTime] [-e endTime] [-t travId]*
[-r <travFile>] [-o <outFile>] <planFile>*

where:
h = print this message
d = defragment the file: create a new plan file containing the merged, filtered plans;

the -o flag must accompany this flag
f = sort output by traveler
v = validate each trip chain:

netConfigFile must be a TRANSIMS configuration file specifying a network
database (Validation may be time-consuming.)

s = include only legs whose (estimated) departure time is >= startTime
e = include only legs whose (estimated) arrival time is <= endTime
t = include only legs for traveler travId; implies the -f flag

(May appear an arbitrary number of times.)
r = include only legs for travelers specified in travFile; implies the -f option

(May appear together with the -t options.)
o = place output in outFile; default is standard output

Arguments that do not start with “-” are assumed to be input plan files.

5.5.2 DistributePlan

5.5.2.1 Overview

The purpose of this tool is to create a separate pair of indexes into a plan file for each processor in
a multiprocessor run of the microsimulation. Each leg of a trip is assigned to the processor that
has responsibility for the starting accessory of that leg. This allows the processors to get travelers
into the simulation more efficiently than if each processor had to read in every leg, discarding those
that it did not need.

5.5.2.2 Algorithm

DistributePlans uses a mapping from accessory type and ID to CPU number. This mapping, or
partition, is created during a simulation run as specified by the values of certain configuration file
keys. It is saved in a file specified by the PAR_PARTITION_FILE key if the
PAR_SAVE_PARTITION key is set. Note that, if run time information is saved during the
simulation (using the PAR_RTM_INPUT_FILE) and that information is used to partition the
network on the next run (by setting the CA_USE_RTM_FEEDBACK key), the partition can
change from one run to the next.

DistributePlans can also generate the partition if none is present. In this case, the partition can be
saved and used by the microsimulation (by turning off both the PAR_USE_METIS_PARTITION
and PAR_USE_OB_PARTITION keys).

DistributePlans creates an index file for each processor in the partition, using a simple naming
convention that allows the individual slaves to find the correct index file if it exists.

For each leg in a plan file specified by the PLAN_FILE configuration key, DistributePlans
determines the starting location’s accessory type and ID. Next, it finds the processor number

TRANSIMS-LANL-1.0 – Files – May 1999 Page 37
LA-UR – 99-2579

assigned responsibility for that location. Finally, it places an index entry for the leg in the file for
that processor. The underlying data is not moved.

There is one additional task handled by DistributePlans. When a trip’s legs are distributed, it
becomes difficult for any processor to know whether a particular leg represents the first or last leg
a traveler will undertake during the course of the simulation. This information is required because
on a traveler’s first leg, the associated object must be created within the simulation. On all other
legs, the traveler object must not be created— instead the simulation must wait for the traveler
object to arrive at that leg’s starting location before allowing it to continue. Similarly, but not
quite as importantly, efficient use of memory requires deleting the traveler object at the end of it’s
last leg.

DistributePlans ensures that the appropriate information about each traveler is made available to
the simulation. It places an index entry for the first leg of each traveler’s trip into each distributed
index. This, in combination with the ability of the microsimulation to use both a traveler ID sorted
index and a time sorted index allows it to correctly create and destroy travelers.

5.5.2.3 Usage

DistributePlans <config-file>

5.5.2.4 Configuration Keys

The keys listed in Table 13 are used when a partition already exists.

Table 13: Keys if a partition exists.

Configuration Key Description
PAR_PARTITION_FILE Name of a file providing a mapping from nodes to processors. This file also

includes node coordinates, so it can be used to display the partition.
PLAN_FILE The name of a plan file to distribute over the partition.
NET_* The configuration file should also contain all the NET_ keys.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 38
LA-UR – 99-2579

The keys listed in Table 14 are used to generate a partition if one does not already exist.

Table 14: Keys to generate a partition.

Configuration Key Description
PARTITIONER_USE_NETWORK_CACHE If set, the code will read in a binary cached version

of the network.
GBL_CELL_LENGTH The length of a CA cell in meters.
PAR_MIN_CELLS_TO_SPLIT Splitting short links can cause problems in the

dynamics of the microsimulation. No links with
fewer cells than this will be split.

PAR_SLAVES The number of processors in the partition.
PAR_RTM_PENALTY_FACTOR,
PAR_RTM_INPUT_FILE,
CA_USE_RTM_FEEDBACK

See the description in the software modules volume,
Microsimulation section on configuration keys.

PAR_HOST_COUNT,
PAR_HOST_CPUS_<n>,
PAR_HOST_SPEED_<n>

These parameters are used to describe the machine
environment. Relative processor speed will be
taken into account when creating the partition.

PAR_USE_METIS_PARTITION,
PAR_USE_OB_PARTITION

If PAR_USE_METIS_PARTITION is set, the
partition will be determined using the METIS graph
partitioning library. If
PAR_USE_OB_PARTITION an is set, orthogonal
bisection algorithm will be used. If neither is set,
the partition specified in the
PAR_PARTITION_FILE will be used.

PAR_SAVE_PARTITION The partition will be saved in
PAR_PARTITION_FILE only if this is set.

5.5.2.5 Troubleshooting

If a very large number of processors are used, the algorithm may run into an operating system limit
on the number of open file descriptors allowed.

Distributing the indexes makes the plan-reading phase of the microsimulation more efficient.
However, there may be I/O considerations that are important when a large number of processors
are trying to gain access to the same underlying data files. This problem could be addressed by
using the PlanFilter tool to create a separate data file for each of the indexes created and the
IndexPlanFile tool to recreate the indexes, now pointing at the distributed plan files instead of a
global file.

5.6 Files

Table 15: Plan library files.

Type File Name Description
Binary Files libTIO.a TRANSIMS Interfaces library.
Source Files planio.c Defines plan data structures and interface functions.

planio.h Plan interface functions source file.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 39
LA-UR – 99-2579

5.7 Configuration Keys

Table 16. Plan file configuration keys.

Configuration Key Description
PLAN_FILE Location of a file containing plans, or the base name of an

index which points to plan files. Used by the Route Planner
for output and the microsimulation and Selector for input.

CA_USE_PARTITIONED_ROUTE_FILES If this key is set, the simulation expects to find separate
indices into a plan file for each slave. These can be
produced using a partition file and the DistributePlans
utility.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 40
LA-UR – 99-2579

5.8 Examples

Table 17 gives a six-leg plan for traveler 1. It is a walk-car-walk-bus-walk plan.

Table 17: Annotated example of a plan.

Trip/Leg Plan Description
Trip 1/Leg 1 1 156 1 1 1 0

25200 123 1 456
33 25200 1
0 2
2
1000 1001

The user has chosen to mark this leg with the code 156, which has meaning only to that
user but will be duly reported in any output concerned with this leg. It is trip 1, leg 1
for this traveler. It is the first leg to be simulated for this traveler, but not the last. The
planner expects the trip to start at 25200 = 7∗3600 = 7 AM. The leg will start at
activity location 123 and end at parking accessory 456. The planner expects the trip to
take 33 seconds. The traveler’s next leg will begin upon arrival at the destination or 33
seconds after departure from the origin, whichever is later. The traveler is not driving a
vehicle and is, in fact, walking (mode = 2). There are two tokens of mode-dependent
data, which in this case might be the nodes traversed. The CA microsimulation would
probably simply use the planner’s estimated duration and place the traveler in the
destination queue 33 seconds after his arrival at the origin. However, the simulation
could also choose to estimate its own duration. The microsimulation will not use the
node information.

Trip 1/Leg 2 1 156 1 2 0 0
25233 456 2 789
1314 0 1
1 0
18
0 0
1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16

Leg 2 of trip 1 is neither the first nor the last. The traveler will be driving (driver flag =
1) a car (mode = 0) from parking accessory 456 to parking accessory 789 via the 16
nodes 1-16 using vehicle 0, carrying no passengers. The expected start time is 7:00:33
a.m., and the expected duration is 1314 seconds.

Trip 1/Leg 3 1 156 1 3 0 0
26547 789 2 10 2
127 0 1
1 0
5
0 1
17 18
1000

Traveler 1 picks up one passenger (traveler 1000) and drives to parking accessory 10
via nodes 17 and 18.

Trip 1/Leg 4 1 156 1 4 0 0
26674 10 2 11 3
30 0 1
0 2
0

The traveler walks (mode = 2) from parking accessory 10 to bus stop (accessory type =
3) 11. The planner, knowing that the simulation will not simulate walking, has chosen
not to write out the details of the path the walker will take (Number Of Tokens = 0).

Trip 1/Leg 5 1 156 1 5 0 0
26704 11 3 4 3
1502 0 1
0 1
1
72

The traveler will ride in (driver_flag = 0) the first bus (mode = 1) arriving on route 72,
from bus stop 11 to bus stop 4.

Trip 1/Leg 6 0 156 1 0 0
28206 4 3 5 1
31 0 1
1 2
0

The traveler takes 31 seconds to walk from bus stop 4 to activity location 5.

Trip 2/Leg 1 1 156 2 0 1
28237 5 1 5 1
28800 61200 1
1 4
0

This is the first leg of trip 2 for traveler 1. Since the last leg flag is set, it is also the last
leg that will be simulated. It is an activity (mode = 4) that ends at 5:00 p.m. (= 17 ∗
3600 = 61200 seconds) or eight hours (= 8 ∗ 3600 = 28800) after arrival, whichever
is later. There is no data associated with this leg, although the planner could, in
principle, add anything— a list of projects the person will be working on, a list of
groceries to buy, etc.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 41
LA-UR – 99-2579

6. TRANSIT

This section discusses how to describe transit routes for the TRANSIMS planner and
microsimulation.

6.1 Terms

Transit Refers to vehicles traveling on pre-specified routes, stopping at specific accessory
locations listed in the Transit Stop network data table, and attempting to follow a
predetermined schedule.

Route A transit route is a sequential set of transit stops visited by a transit vehicle. Each
route is assigned an integer ID. No transit route may include the same transit stop
more than once. For example, the inbound and outbound portions of a round trip
must be assigned different route IDs. Also, two transit vehicles that follow the
same path through the network but stop at different places along the path (for
example, an express and local train) must have different route IDs.

Transit Stop An accessory as defined in the Transit Stop network data table.

6.2 File Format

The transit network topology is described by the transit route file (configuration parameter
TRANSIT_ROUTE_FILE). This is an ASCII text file listing the Transit Stop IDs at which
vehicles on each transit route are allowed to stop.

The transit schedule is described by the transit schedule file (configuration parameter
TRANSIT_SCHEDULE_FILE). This is a ASCII text file listing information needed by the
planner to determine paths through the transit network.

6.2.1 Transit Route File Format

The Transit Route File is an ASCII text file whose fields are separated by white space (space(s),
tab(s), or newline(s)). For each route, the file contains the route ID, the number of transit stops the
route visits, and a list of the ID of each stop, in the order visited. The column names are not part
of the data file.

Table 18: Transit route file data definitions and format.

Column Name Description Allowed Values
Transit Route ID A unique identifier for this route. integer
Number of Stops The number of transit stop IDs to follow. integer
List of Transit Stop IDs IDs of the transit stops this route visits, in the order

encountered.
integer

TRANSIMS-LANL-1.0 – Files – May 1999 Page 42
LA-UR – 99-2579

6.2.2 Transit Schedule File Format

The Transit Schedule File is an ASCII text file whose fields are separated by white space
(space(s), tab(s), or newline(s)). The file must be sorted by Vehicle ID, Transit Route ID, and time
– in that order.

Table 19: Transit schedule file data definitions and format.

Column Name Description Allowed Values
Vehicle ID Vehicle IDs are defined in the vehicle file. integer
Transit Route ID A unique identifier for this route. integer
Time Arrival time at the stop. integer: seconds

since midnight
Link ID IDs of the link on which the transit stop resides. integers
Destination Node ID ID of the node toward which the vehicle is heading. integer
Transit Stop ID ID of this transit stop, as specified in the network data tables. integer

6.3 Interface Functions

The transit subsystem has C structures and utility functions that are used to read and write data
from a TRANSIMS vehicle file.

The function getNextTransit() reads transit data from a transit file in ASCII format. The
function stores the information in an unmodifiable data structure (TransitData), and returns a
pointer to the structure. Since the TransitData structure cannot be modified by the calling
program, the data should be copied if it needs to be changed.

The function writeTransit() takes a TransitData structure as an argument containing the
information to be written. The getNextTransit() function combined with the
moreTransit() function provides a mechanism for iterating through the transit file reading the
transit data.

6.3.1 moreTransitData
Signature: int moreTransitData(FILE * const fp)

Description: Boolean function used to control iteration through the transit file.

Argument: fp – FILE * for the transit file that must be open for reading.

Return Value: Returns 1 if not at end of transit data file.
Returns 0 if EOF has been reached.

6.3.2 getNextTransitData
Signature: const TransitData * getNextTransitData (FILE * const fp)

Description: Reads transit data from the transit data file.

Argument: fp – FILE * to the transit data file, which must be open for reading.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 43
LA-UR – 99-2579

Return Value: The address of a TransitData structure containing the transit data read
from the file. Returns NULL on error.

6.3.3 writeTransitData
Signature: int writeTransitData(FILE * const fp, TransitData *

data);

Description: Writes the given TransitData into a line of the given transit data file.

Argument: fp – FILE * to the transit data file, which must be open for writing.
data – address of a TransitData structure containing the data to be

written.

Return Value: 1 on success.
0 on error.

6.4 Data Structures

6.4.1 TransitData

This structure is used for transit data as specified in the transit route file.

typedef struct transitdata_s
{
/** The route Id. **/
INT32 fRouteId;

/** The number of stops. **/
INT32 fNumStops;

/** An array of stopIds for the stops. **/
INT32 *fStopIDs;

} TransitData;

6.5 Files

Table 20: Transit library files.

Type File Name Description
Binary Files libTIO.a TRANSIMS Interfaces library
Source Files transitio.c Defines transit data structures and interface

functions
transitio.h Transit interface functions source file

TRANSIMS-LANL-1.0 – Files – May 1999 Page 44
LA-UR – 99-2579

6.6 Configuration Keys

Table 21: Transit file configuration keys.

Configuration Key Description
TRANSIT_ROUTE_FILE The name of a transit route file whose format is described Table 18.

Used as input by the microsimulation and the Route Planner.
TRANSIT_SCHEDULE_FILE The name of a transit schedule file whose format is described above.

Used as input by the microsimulation.

6.7 Examples

In the example, note that

• routes 1 and 2 together comprise a round trip
• routes 8 and 10 stop in the same places
• routes need not be consecutively numbered
• stops need not be listed in numerical order

1 5
5
6
7
8
9
2 6
8
9
6
7
4
5
8 2
92
70
9 2
68
69
10 2
92
70

TRANSIMS-LANL-1.0 – Files – May 1999 Page 45
LA-UR – 99-2579

7. NETWORK

The TRANSIMS network representation provides detailed information about streets, intersections,
signals, and transit in a road network. This section discusses the concepts involved in describing a
road network and the TRANSIMS data table formats. In our analysis of road networks, we have
relied on traffic engineering practice as described in references [Do 97], [GHA 88], [ITE 85],
[ITE], [MM 84], [Or 93], and [PP 93].

7.1 Terms

Node A node is the part of the network corresponding to a vertex in graph theory.
Nodes typically occur at intersections in the road network. A node must be
present where the network branches and where the permanent number of
lanes changes. A lane is considered permanent if it is not a temporary,
pocket lane (see the definition of pocket lane below). A node may be
present where neither of the aforementioned occurs, however. Nodes are
not required where turn pockets start or end because these are not
considered permanent lanes. Each node has a traffic control associated
with it (null, unsignalized, pre-timed, actuated, coordinated, etc.).

Link A link is the part of the network corresponding to an edge in graph theory.
Links represent street and road segments. Each link has a constant number
of permanent lanes but may have a variable number of pocket lanes. A
link may have lanes in both directions; alternately, the lanes in opposite
directions may be on separate links (in which case no passing into
oncoming lanes is possible). Table 22 (at the end of this section) lists the
functional classes for links.

Lane A lane is where traffic flows on a link. The lanes on each side/direction of
the link are numbered separately, starting with lane number one as the
leftmost lane (relative to the direction of travel). Each successive lane to
the right of it is numbered one greater than its predecessor. Pocket lanes
(i.e., turn pockets, merges, and pull-outs) are numbered in sequence, even if
they do not exist for the full length of the link. A two-way left-turn lane, if
present, is considered to be lane number zero.

Pocket Lanes A pocket lane is either (a) a right- or left-turn pocket (a lane that starts
after the from node and ends at the to node), (b) a right or left pull-out (a
lane that starts after the from node and ends before the to node), or (c) a
right or left merge pocket (a lane that starts at the from node and ends
before the to node). If a lane starts at the from node and ends at the to
node, it is considered a permanent lane, not a pocket lane.

Barrier A barrier is a divider such as a curb or grade separation that prevents
vehicles from moving between two adjacent lanes on a link.

Parking Parking areas are located along links and are used as origins and
destinations for vehicle trips. Parking may be placed where it is physically

TRANSIMS-LANL-1.0 – Files – May 1999 Page 46
LA-UR – 99-2579

located in the network, or it may be placed in aggregate generic parking
areas representing several of the driveways, lots, parking places, etc., on a
link. Places where vehicles leave the network are called boundary parking
areas.

Transit Stop A transit stop is a location on a link where a transit vehicle, such as a bus
or light rail car, waits to embark and disembark passengers.

Lane Connectivity Lane connectivity specifies how lanes are connected across a node. Lanes
are numbered from the median and include turn pockets. Incoming and
outgoing links and lanes are defined relative to the node. For each
incoming lane on an incoming link, at least one outgoing lane must be
specified for each outgoing link that a vehicle on the incoming link can
transition to. Multiple outgoing lanes may be defined for an outgoing link,
if desired.

Traffic Control Each node has a traffic control associated with it. The traffic control
specifies how lanes are connected across the node and the type of sign or
signalized control that determines who has the right-of-way.

Signal Coordinator A signal coordinator is a device that controls the operation of one or more
traffic controls.

Unsignalized Node An unsignalized node represents the type of sign control, if any, that is
present at an unsignalized node. Examples are stop and yield signs. Nodes
where only the number of permanent lanes is changing are generally
considered unsignalized.

Signalized Node A signalized node represents a traffic light. Each signal has a timing plan
and a phasing plan.

Phasing Plan A phasing plan specifies the turn protection in effect for transitioning from
an incoming link to an outgoing link during a particular phase of a specific
timing plan.

Timing Plan A timing plan specifies the lengths of the intervals during the specific
phases for a traffic light. Many nodes may have the same timing plan. It
is possible for each phase to transition to more than one phase if required.

Detector A detector is a device that identifies the presence or passage of a vehicle
over an area of the lanes on a link.

Activity Location An activity location is a place on a link where traveler activities (such as
work, home, shopping) can take place.

Process Link A process link is a “virtual” connection between an activity location,
parking place, or transit stop and another activity location, parking
location, or transit stop; it represents the process of changing modes and
accounts for the cost (in time and money) of making a mode change.

Study/Buffer Areas The microsimulation distinguishes two types of links in its calculations:
Study area links are the links of interest for the traffic analyst. The output

TRANSIMS-LANL-1.0 – Files – May 1999 Page 47
LA-UR – 99-2579

subsystem, for instance, records events such as when a vehicle leaves or
enters the study area. The nature of the microsimulation makes it
necessary to simulate traffic on additional buffer area links. Typically,
these links form a fringe about two links thick around the study area. A
simulation includes buffer links in order to avoid edge effects such as when
vehicles enter the study area on its boundary; the buffer gives these
vehicles time to interact with other traffic and achieve realistic behavior
before entering the study area.

Table 22: Functional classes for links [Do 97].

Name Interpretation
Freeway A divided, arterial highway for through traffic with full control of access. Full access control

means the authority to control access is exercised to give preference to through traffic by
providing access connections with selected public roads, but prohibiting grade crossings and/or
direct private driveway connections.

Expressway A divided, arterial highway for through traffic with partial control of access. Partial control of
access means that some authority is exercised to control access in the manner described above,
but there are crossings at grade and/or direct private driveway connections.

Primary Arterial A major arterial roadway with intersections at grade crossings and direct access to abutting
property and on which geometric design and traffic-control measures are used to expedite safe
movement of through traffic.

Secondary Arterial A minor arterial roadway with intersections at grade crossings and direct access to abutting
property and on which geometric design and traffic-control measures are used to expedite safe
movement of through traffic.

Frontage Road An arterial that runs parallel to a freeway or expressway.
Collector Street A roadway on which vehicular traffic is given preferential right of way, and at the entrances to

which vehicular traffic from intersecting roadways is required by law to yield right-of-way to
vehicles on such a roadway in obedience to either a stop sign or a yield sign, when such signs
are erected.

Local Street A street or road primarily for access to residence, business, or other abutting property.
Freeway Ramp A unidirectional roadway providing connection between a freeway or expressway and an

arterial.
Zonal Connector An imaginary (non-physical) connection to or from the centroid of a traffic analysis zone.
Other Any roadway not fitting the above definitions.
Walkway A street restricted to use by pedestrians.
Busway A street restricted to use by buses.
Light Rail A roadbed restricted to use by light rail cars.
Heavy Rail A roadbed restricted to use by heavy rail cars.
Ferry A waterway crossed by ferry.

7.2 File Format

This section specifies the formats for the 19 data tables required to describe a TRANSIMS road
network. Table 23 shows how the tables depend on one another. The units of measurement are SI
units— i.e., distances in meters, time in seconds, etc. Geographic coordinates are specified in the
UTM system. The TRANSIMS software architecture allows for the inclusion of additional
columns desired by an analyst, so the specification below gives only the required columns. The
format for data files is ASCII, with columns delimited by tab characters; records are terminated by
a new-line character (i.e., ISO format). The first line of the file must contain the field names (i.e.,
column headings) delimited by tab characters.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 48
LA-UR – 99-2579

Table 23: Interdependencies between network tables.

Table Tables on which it depends
Link Node
Speed Node, Link, Pocket Lane
Pocket Lane Node, Link
Lane Use Node, Link, Pocket Lane
Parking Node, Link
Barrier Node, Link, Pocket Lane
Transit Stop Node, Link
Lane Connectivity Node, Link, Pocket Lane
Turn Prohibition Node, Link, Pocket Lane
Unsignalized Node Node, Link, Pocket Lane
Signalized Node Node, Timing Plan
Phasing Plan Node, Link, Pocket Lane, Timing Plan
Detector Node, Link, Pocket Lane
Signal Coordinator Node, Signalized Node
Activity Location Node, Link
Process Link Parking, Transit Stop, Activity Location
Study Area Link Link

7.2.1 Node Table

Table 24 specifies the format for the node table. To validate a node table, it is necessary to verify
the following:

• The field names and types are correct.

• The data values are in the legal ranges.

• The IDs are unique.

• No nodes have the same easting, northing, and elevation. Nodes with the same easting and
northing, but different elevations, are acceptable.

Table 24: Node table format.

Column Name Description Allowed Values
ID ID number of the node. integer: 1 through 2,147,483,647
EASTING The x-coordinate of the node (in meters, UTM

coordinate system).
floating-point number

NORTHING The y-coordinate of the node (in meters, UTM
coordinate system).

floating-point number

ELEVATION The z-coordinate of the node (in meters, UTM
coordinate system).

floating-point number

NOTES Character string used for data quality
annotations; free format (may be blank).

255 characters

TRANSIMS-LANL-1.0 – Files – May 1999 Page 49
LA-UR – 99-2579

7.2.2 Link Table

Table 25 specifies the format for the link table. To validate a link table, it is necessary to verify
the following:

• The field names and types are correct.

• The data values are in the legal ranges.

• The IDs are unique.

• The nodes at the endpoints exist.

• There are different nodes at the endpoints.

• There are permanent lanes in at least one direction.

• There is at least one permanent lane in every direction that there is a pocket lane.

• The length of the link is at least as great as the distance between its endpoints.

• The length of the link is not far greater (e.g., 50% more) than the distance between its
endpoints.

• The length of the link is not exceedingly small. (The TRANSIMS microsimulation may have
difficulty simulating successive links that are less than about 50 meters long.)

• The sum of the setback lengths is less than the length of the link.

• All nodes have at least one incoming and one outgoing link.

• At least some types of vehicles are allowed on the link.

• The functional classes of all of the links connected to a node are consistent: Divide the
TRANSIMS functional classes into three categories: (i) restricted— Freeway, Expressway; (ii)
surface— Primary Arterial, Secondary Arterial, Frontage Road, Collector, Local Street, Zonal
Connector, Other, Ferry, Walkway; (iii) miscellaneous— Ramp, Bikeway, Busway, Light Rail,
Heavy Rail. There are inconsistent functional classes if there is a mixture of restricted and
surface links at a node. (This notion can probably be refined further.)

• The network graph is fully connected (i.e., one can reach any node from any other node).

• The network does not contain modal sources or sinks. A modal source (sink) is a node
vehicles of a particular type can leave (enter), but cannot enter (leave).

• The network does not contain unwanted modal islands. A modal island is a set of links for a
particular type of vehicle that is disconnected from the rest of the links for that type of vehicle.
(There may be some cases, such as for transit routes, where modal islands are desirable.)

TRANSIMS-LANL-1.0 – Files – May 1999 Page 50
LA-UR – 99-2579

Table 25: Link table format.

Column Name Description Allowed Values
ID ID number of the link. integer: 1 through 2,147,483,647
NAME Name of street. 50 characters
NODEA ID number of the node at A. integer: 1 through 2,147,483,647
NODEB ID number of the node at B. integer: 1 through 2,147,483,647
PERMLANESA Number of lanes on the link heading toward

node A, not including pocket lanes.
integer: 0 through 255

PERMLANESB Number of lanes on the link heading toward
node B, not including pocket lanes.

integer: 0 through 255

LEFTPCKTSA Number of pocket lanes to the left of the
permanent lanes heading toward node A.

integer: 0 through 255

LEFTPCKTSB Number of pocket lanes to the left of the
permanent lanes heading toward node B.

integer: 0 through 255

RGHTPCKTSA Number of pocket lanes to the right of the
permanent lanes heading toward node A.

integer: 0 through 255

RGHTPCKTSB Number of pocket lanes to the right of the
permanent lanes heading toward node B.

integer: 0 through 255

TWOWAYTURN Whether there is a two-way left-turn lane in
the center of the link.

one character:
‘F’ = false/no
‘T’ = true/yes

LENGTH Length of the link (in meters). positive floating-point number
GRADE Percentage grade from node A to node B,

uphill being a positive number.
floating-point number between –100
and +100

SETBACKA Set-back distance (in meters) from the center
of the intersection at node A.

non-negative floating-point number

SETBACKB Set-back distance (in meters) from the center
of the intersection at node B.

non-negative floating-point number

CAPACITYA Total capacity (in vehicles per hour) for the
lanes traveling to node A.

non-negative floating-point number

CAPACITYB Total capacity (in vehicles per hour) for the
lanes traveling to node B.

non-negative floating-point number

SPEEDLMTA Default speed limit (in meters per second) for
vehicles traveling toward node A.

positive floating-point number

SPEEDLMTB Default speed limit (in meters per second) for
vehicles traveling toward node B.

positive floating-point number

FREESPDA Default free-flow speed (in meters per second)
for vehicles traveling toward node A.

positive floating-point number

FREESPDB Default free-flow speed (in meters per second)
for vehicles traveling toward node B.

positive floating-point number

TRANSIMS-LANL-1.0 – Files – May 1999 Page 51
LA-UR – 99-2579

Column Name Description Allowed Values
FUNCTCLASS Functional class of the link; a link that

permits both road and rail traffic should be
coded with the roadway class.

ten characters:
‘FREEWAY’ = freeway
‘XPRESSWAY’ = expressway
‘PRIARTER’ = primary arterial
‘SECARTER’ = secondary arterial
‘FRONTAGE’ = frontage road
‘COLLECTOR’ = collector
‘LOCAL’ = local street
‘RAMP’ = freeway ramp
‘ZONECONN’ = zonal connector
‘OTHER’ = other
‘WALKWAY’ = walk only
‘BIKEWAY’ = bicycle only
‘BUSWAY’ = bus only roadway
‘LIGHTRAIL’ = light rail only
‘HEAVYRAIL’ = heavy rail
‘FERRY’ = ferry

THRUA Default through link connected at node A; a
zero indicates there is no through link.

integer: 0 through 2,147,483,647

THRUB Default through link connected at node B; a
zero indicates there is no through link.

integer: 0 through 2,147,483,647

COLOR The color number for the link (all of the links
connected to a given link must have different
colors).

integer: 1 through 63

VEHICLE Vehicle types (modes) allowed to use this
link.

string of characters separated by
slashes:
‘WALK’ = walking allowed
‘AUTO’ = private auto
‘TRUCK’ = motor carrier
‘BICYCLE’ = bicycle
‘TAXI’ = paratransit
‘BUS’ = bus
‘TROLLEY’ = trolley
‘STREETCAR’ = streetcar
‘LIGHTRAIL’ = light rail transit
‘RAPIDRAIL’ = rail rapid transit
‘REGIONRAIL’ = regional rail

NOTES Character string used for data quality
annotations; free format (may be blank).

255 characters

7.2.3 Speed Table

Entries in the Speed Table are only required when the speed limit or free speed for a link varies for
different types of vehicles allowed to use the link. The speeds that appear in the Link Tables are
used as defaults for any vehicle types not specified in a record in the Speed Table.

Table 26 specifies the format for the speed table. To validate a speed table, it is necessary to
verify the following:
• The field names and types are correct.
• The data values are in the legal ranges.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 52
LA-UR – 99-2579

• The node and link references are correct.
• The vehicle types are consistent with the vehicle types allowed on the link.

Table 26: Speed table format.

Column Name Description Allowed Values
LINK ID number of the link with multiple speeds. integer: 1 through 2,147,483,647
NODE ID number of the node toward which lanes

are headed.
integer: 1 through 2,147,483,647

SPEEDLMT Speed limit (in meters per second) for
vehicles.

positive floating-point number

FREESPD Free-flow speed (in meters per second) for
vehicles.

positive floating-point number

VEHICLE Vehicle type(s) to which speeds apply. string of characters separated by
slashes:
‘AUTO’ = private auto
‘TRUCK’ = motor carrier
‘BICYCLE’ = bicycle
‘TAXI’ = paratransit
‘BUS’ = bus
‘TROLLEY’ = trolley
‘STREETCAR’ = streetcar
‘LIGHTRAIL’ = light rail transit
‘RAPIDRAIL’ = rail rapid transit
‘REGIONRAIL’ = regional rail

STARTTIME Starting time for the speeds. a character string with the day of
week,
‘SUN’ = Sunday
‘MON’ = Monday
‘TUE’ = Tuesday
‘WED’ = Wednesday
‘THU’ = Thursday
‘FRI’ = Friday
‘SAT’ = Saturday
‘WKE’ = any weekend day
‘WKD’ = any weekday
‘ALL’ = any day,
followed by the time of day (on a 24-
hour clock), for example
‘WKD13:20’ is any weekday at 1:20
in the afternoon

ENDTIME Ending time for the speeds. specified like STARTTIME
NOTES Character string used for data quality

annotations; free format (may be blank).
255 characters

TRANSIMS-LANL-1.0 – Files – May 1999 Page 53
LA-UR – 99-2579

7.2.4 Pocket Lane Table

Table 27 specifies the format for the pocket lane table. To validate a pocket lane table, it is
necessary to verify the following:
• The field names and types are correct.
• The data values are in the legal ranges.
• The IDs are unique.
• The node and link references are correct.
• The lane number is that of a valid pocket lane.
• The offset and length are consistent with the setbacks and length of the link.
• None of the pockets overlap.
• All of the pocket lanes specified in the link table are present.

Table 27: Pocket lane table format.

Column Name Description Allowed Values
ID ID number of the pocket lane. integer: 1 through 2,147,483,647
NODE ID number of the node toward which the pocket

lane leads.
integer: 1 through 2,147,483,647

LINK ID number of the link on which the pocket lane
lies.

integer: 1 through 2,147,483,647

OFFSET Starting position of the pocket lane, measured (in
meters) from NODE (applicable to pull-out
pockets only).

non-negative floating-point
number

LANE Lane number of the pocket lane. integer: 1 through 255
STYLE Type of the pocket lane. one character:

‘T’ = turn pocket
‘P’ = pull-out pocket
‘M’ = merge pocket

LENGTH Length of the pocket lane (in meters); turn pockets
and merge pockets always start or end at the
appropriate limit line.

positive floating-point number

NOTES Character string used for data quality annotations;
free format (may be blank).

255 characters

7.2.5 Lane Use Table

Entries in the Lane Use Table are only required when a lane has restrictions for certain vehicle
types. The vehicle types specified in the Link Table are permitted unrestricted use of all lanes on
the link when there is no record in the Lane Use Table.

Table 28 specifies the format for the lane use table. To validate a lane use table, it is necessary to
verify the following:
• The field names and types are correct.
• The data values are in the legal ranges.
• The node, link, and lane references are correct.
• The vehicle types allowed for the parking are consistent with the vehicle types allowed on the

link.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 54
LA-UR – 99-2579

Table 28: Lane use table format.

Column Name Description Allowed Values
NODE ID number of the node toward which the lane

leads.
integer: 1 through 2,147,483,647

LINK ID number of the link on which the lane lies. integer: 1 through 2,147,483,647
LANE Lane number. integer: 1 through 255
VEHICLE Vehicle type(s) to which restriction applies. string of characters separated by

slashes:
‘HOV2’ = high occupancy vehicle
with two or more occupants
‘HOV3’ = high occupancy vehicle
with three or more occupants
‘HOV4’ = high occupancy vehicle
with four or more occupants
‘BICYCLE’ = bicycle
‘AUTO’ = private auto
‘TRUCK’ = motor carrier
‘BUS’ = bus
‘TROLLEY’ = trolley
‘STREETCAR’ = streetcar
‘LIGHTRAIL’ = light rail transit
‘RAPIDRAIL’ = rail rapid transit
‘REGIONRAIL’ = regional rail

RESTRICT Type of lane restriction. one character:
‘O’ = only this vehicle type may use
lane
‘R’ = lane required to be used by
this vehicle type
‘N’ = lane not allowed to be used by
this vehicle type

STARTTIME Starting time for the restriction. a character string with the day of
week,
‘SUN’ = Sunday
‘MON’ = Monday
‘TUE’ = Tuesday
‘WED’ = Wednesday
‘THU’ = Thursday
‘FRI’ = Friday
‘SAT’ = Saturday
‘WKE’ = any weekend day
‘WKD’ = any weekday
‘ALL’ = any day,
followed by the time of day (on a 24-
hour clock), for example
‘WKD13:20’ is any weekday at 1:20
in the afternoon

ENDTIME Ending time for the restriction. specified like STARTTIME
NOTES Character string used for data quality

annotations; free format (may be blank).
255 characters

TRANSIMS-LANL-1.0 – Files – May 1999 Page 55
LA-UR – 99-2579

7.2.6 Parking Table

Table 29 specifies the format for the parking table. To validate a parking table, it is necessary to
verify the following:
• The field names and types are correct.
• The data values are in the legal ranges.
• The IDs are unique.
• The node and link references are correct.
• The offset is consistent with the setbacks and length of the link.
• The vehicle types allowed for the parking are consistent with the vehicle types allowed on the

link.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 56
LA-UR – 99-2579

Table 29: Parking table format.

Column Name Description Allowed Values
ID ID number of the parking place. integer: 1 through 2,147,483,647
NODE ID number of the node toward which vehicles are

traveling.
integer: 1 through 2,147,483,647

LINK ID number of the link on which the parking place lies. integer: 1 through 2,147,483,647
OFFSET Location of the entrance from the link to the parking

place, measured (in meters) from NODE.
non-negative floating-point number

STYLE Type of the parking place. five characters:
‘PRSTR’ = parallel on street
‘HISTR’ = head in on street
‘DRVWY’ = driveway
‘LOT’ = parking lot
‘BNDRY’ = network boundary

CAPACITY Number of vehicles the parking place can
accommodate; zero for unlimited capacity.

integer: 0 through 65,535

GENERIC Whether the parking place represents generic parking
(not an actual driveway, lot, etc., but a group/aggregate
of them used to simplify modeling).

one character:
‘T’ = true/yes
‘F’ = false/no

VEHICLE Type of vehicle(s) allowed to park at the parking place. string of characters separated by slashes:
‘AUTO’ = private auto
‘TRUCK’ = motor carrier
‘BICYCLE’ = bicycle
‘TAXI’ = paratransit
‘BUS’ = bus
‘TROLLEY’ = trolley
‘STREETCAR’ = streetcar
‘LIGHTRAIL’ = light rail transit
‘RAPIDRAIL’ = rail rapid transit
‘REGIONRAIL’ = regional rail
‘ANY’ = any vehicle type

STARTTIME Starting time for parking. a character string with the day of week,
‘SUN’ = Sunday
‘MON’ = Monday
‘TUE’ = Tuesday
‘WED’ = Wednesday
‘THU’ = Thursday
‘FRI’ = Friday
‘SAT’ = Saturday
‘WKE’ = any weekend day
‘WKD’ = any weekday
‘ALL’ = any day,
followed by the time of day (on a 24-hour
clock), for example ‘WKD13:20’ is any
weekday at 1:20 in the afternoon

ENDTIME Ending time for parking. specified like STARTTIME
NOTES Character string used for data quality annotations; free

format (may be blank).
255 characters

TRANSIMS-LANL-1.0 – Files – May 1999 Page 57
LA-UR – 99-2579

7.2.7 Barrier Table

* Barriers are not supported in IOC-2.

Table 30 specifies the format for the barrier table. To validate a barrier table, it is necessary to
verify the following:
• The field names and types are correct.
• The data values are in the legal ranges.
• The IDs are unique.
• The node, link, and lane references are correct.
• The offset and length are consistent with the setbacks and length of the link.

Table 30: Barrier table format.

Column Name Description Allowed Values
ID ID number of the barrier. integer: 1 through 2,147,483,647
NODE ID number of the node toward which vehicles

are traveling.
integer: 1 through 2,147,483,647

LINK ID number of the link on which the barrier
lies.

integer: 1 through 2,147,483,647

OFFSET Starting position of the barrier, measured (in
meters) from NODE.

non-negative floating-point number

LANE Lane number of lane to the left of the barrier. integer: 0 through 255
STYLE Type of the barrier. ten characters:

‘CURB’ = curb
‘BARRIER’ = barrier
‘GRADESEP’ = grade separation
‘STRIPE’ = painted stripe
‘TEMPORARY’ = temporary barrier

LENGTH Length of the barrier (in meters). positive floating-point number
NOTES Character string used for data quality

annotations; free format (may be blank).
255 characters

TRANSIMS-LANL-1.0 – Files – May 1999 Page 58
LA-UR – 99-2579

7.2.8 Transit Stop Table

Table 31 specifies the format for the transit stop table. To validate a transit stop table, it is
necessary to verify the following:
• The field names and types are correct.
• The data values are in the legal ranges.
• The IDs are unique.
• The node and link references are correct.
• The offset is consistent with the setbacks and length of the link.
• The vehicle types allowed for the transit stop are consistent with the vehicle types allowed on

the link.

Table 31: Transit stop table format.

Column Name Description Allowed Values
ID ID number of the stop. integer: 1 through 2,147,483,647
NAME Name of the stop. 50 characters
NODE ID number of the node toward which

vehicles are traveling.
integer: 1 through 2,147,483,647

LINK ID number of the link on which the stop
occurs.

integer: 1 through 2,147,483,647

OFFSET Location of the stop, measured (in meters)
from NODE.

non-negative floating-point number

VEHICLE Types of vehicles for which this is a stop. string of characters separated by slashes:
‘BUS’ = bus
‘TROLLEY’ = trolley
‘STREETCAR’ = streetcar
‘LIGHTRAIL’ = light rail transit
‘RAPIDRAIL’ = rail rapid transit
‘REGIONRAIL’ = regional rail

STYLE Type of the stop. ten characters:
‘STOP’ = stop (no station)
‘STATION’ = station
‘YARD’ = vehicle storage lot

CAPACITY Number of vehicles the stop can
simultaneously handle; zero for unlimited
capacity.

integer: 0 through 65,535

NOTES Character string used for data quality
annotations; free format (may be blank).

255 characters

TRANSIMS-LANL-1.0 – Files – May 1999 Page 59
LA-UR – 99-2579

7.2.9 Lane Connectivity Table

Table 32 specifies the format for the lane connectivity table. To validate a lane connectivity table,
it is necessary to verify the following:
• The field names and types are correct.
• The data values are in the legal ranges.
• The node, link, and lane references are correct.
• Each lane has at least one incoming and at least one outgoing connection.

Table 32: Lane Connectivity table format.

Column Name Description Allowed Values
NODE ID number of the node. integer: 1 through 2,147,483,647
INLINK ID number of the incoming link. integer: 1 through 2,147,483,647
INLANE Lane number of the incoming lane. integer: 1 through 255
OUTLINK ID number of the outgoing link. integer: 1 through 2,147,483,647
OUTLANE Lane number of the outgoing lane. integer: 1 through 255
NOTES Character string used for data quality annotations;

free format (may be blank).
255 characters

TRANSIMS-LANL-1.0 – Files – May 1999 Page 60
LA-UR – 99-2579

7.2.10 Turn Prohibition Table

Entries in the Turn Prohibition Table are required when particular movements at a node are
prohibited only at certain times of the day. The Lane Connectivity Table specifies the allowed and
prohibited movements that are always in effect at a node.

* A Turn Prohibition Table is not required in IOC-2 because time-of-day restrictions are not
currently supported.

Table 33 specifies the format for the turn prohibition table. To validate a turn prohibition table, it
is necessary to verify the following:
• The field names and types are correct.
• The data values are in the legal ranges.
• The node and link references are correct.

Table 33: Turn prohibition table format.

Column Name Description Allowed Values
NODE ID number of the node. integer: 1 through 2,147,483,647
INLINK ID number of the incoming link. integer: 1 through 2,147,483,647
OUTLINK ID number of the outgoing link. integer: 1 through 2,147,483,647
STARTTIME Starting time for the prohibition. a character string with the day of week,

‘SUN’ = Sunday
‘MON’ = Monday
‘TUE’ = Tuesday
‘WED’ = Wednesday
‘THU’ = Thursday
‘FRI’ = Friday
‘SAT’ = Saturday
‘WKE’ = any weekend day
‘WKD’ = any weekday
‘ALL’ = any day,
followed by the time of day (on a 24-hour
clock), for example ‘WKD13:20’ is any
weekday at 1:20 in the afternoon

ENDTIME Ending time for the prohibition. specified like STARTTIME
NOTES Character string used for data quality

annotations; free format (may be
blank).

255 characters

TRANSIMS-LANL-1.0 – Files – May 1999 Page 61
LA-UR – 99-2579

7.2.11 Unsignalized Node Table

Table 34 specifies the format for the unsignalized node table. To validate an unsignalized node
table, it is necessary to verify the following:
• The field names and types are correct.
• The data values are in the legal ranges.
• The node and link references are correct.
• Each incoming link entering an unsignalized node has a record.

Table 34: Unsignalized node table format.

Column Name Description Allowed Values
NODE ID number of the node. integer: 1 through

2,147,483,647
INLINK ID number of the incoming link. integer: 1 through

2,147,483,647
SIGN Type of sign control on the link. one character:

‘S’ = stop
‘Y’ = yield
‘N’ = none

NOTES Character string used for data quality annotations;
free format (may be blank).

255 characters

TRANSIMS-LANL-1.0 – Files – May 1999 Page 62
LA-UR – 99-2579

7.2.12 Signalized Node Table

Table 35 specifies the format for the signalized node table. To validate a signalized node table, it
is necessary to verify the following:
• The field names and types are correct.
• The data values are in the legal ranges.
• The node references are correct.
• The plan references are correct.
• Each node has either one signalized or one unsignalized control.
• All plans are used.
• The start times are valid.

Table 35: Signalized node table format.

Column Name Description Allowed Values
NODE ID number of the node. integer: 1 through 2,147,483,647
TYPE Type of the signal. one character:

‘T’ = timed
‘A’ = actuated

PLAN ID number of a timing plan. integer: 1 through 65,535
OFFSET Relative offset (in seconds) for coordinated

signals.
non-negative floating-point number

STARTTIME Starting time for the plan. a character string with the day of week
‘SUN’ = Sunday
‘MON’ = Monday
‘TUE’ = Tuesday
‘WED’ = Wednesday
‘THU’ = Thursday
‘FRI’ = Friday
‘SAT’ = Saturday
‘WKE’ = any weekend day
‘WKD’ = any weekday
‘ALL’ = any day,
followed by the time of day (on a 24-
hour clock), for example ‘WKD13:20’
is any weekday at 1:20 in the
afternoon

COORDINATR ID number of coordinator for the signal;
equivalent to NODE number if signal is
isolated.

integer: 1 through 2,147,483,647

RING Single or dual ring, required only for
TYPE = ‘A’.

one character:
‘S’ = single
‘D’ = dual

ENTRY Single or dual entry, required only for
RING = ‘D’.

one character:
‘S’ = single
‘D’ = dual

NOTES Character string used for data quality
annotations; free format (may be blank).

255 characters

TRANSIMS-LANL-1.0 – Files – May 1999 Page 63
LA-UR – 99-2579

7.2.13 Phasing Plan Table

Table 36 specifies the format for the phasing plan table. To validate a phasing plan table, it is
necessary to verify the following:

• The field names and types are correct.
• The data values are in the legal ranges.
• The plan, phase, node, and link references are correct.
• Each incoming and outgoing link is controlled.

Table 36: Phasing plan table format.

Column Name Description Allowed Values
NODE ID number of the node . integer: 1 through 2,147,483,647
PLAN ID number of the timing plan. integer: 1 through 65,535
PHASE Phase number. integer: 1 through 255
INLINK ID number of the incoming link. integer: 1 through 2,147,483,647
OUTLINK ID number of the outgoing link. integer: 1 through 2,147,483,647
PROTECTION Movement protection indicator. one character:

‘P’ = protected
‘U’ = unprotected
‘S’ = unprotected after stop

NOTES Character string used for data quality annotations;
free format (may be blank).

255 characters

TRANSIMS-LANL-1.0 – Files – May 1999 Page 64
LA-UR – 99-2579

7.2.14 Timing Plan Table

Table 37 specifies the format for the timing plan table. To validate a timing plan table, it is
necessary to verify the following:
• The field names and types are correct.
• The data values are in the legal ranges.
• The (plan, phase) pairs are unique.
• The time values are consistent.
• The phase sequence references existent phases.

Table 37: Timing plan table format.

Column Name Description Allowed Values
PLAN ID number of a timing plan. integer: 1 through 65,535
PHASE Phase number. integer: 1 through 255
NEXTPHASES Phase number(s) of the next phase(s) in

sequence.
string of phase numbers, separated by
slashes

GREENMIN Minimum length (in seconds) of the green
interval, or fixed green length for timed signal.

non-negative floating-point number

GREENMAX Maximum length (in seconds) of the green
interval.

non-negative floating-point number

GREENEXT Length (in seconds) of the green extension
interval.

non-negative floating-point number

YELLOW Length (in seconds) of the yellow interval. non-negative floating-point number
REDCLEAR Length (in seconds) of the red clearance

interval.
non-negative floating-point number

GROUPFIRST For pre-timed or single ring: 1 if first phase, 0
if not first phase; for dual ring: number of
phase group for which this phase is first phase,
0 if not first phase in the phase group.

integer: 0 through 255

NOTES Character string used for data quality
annotations; free format (may be blank).

255 characters

TRANSIMS-LANL-1.0 – Files – May 1999 Page 65
LA-UR – 99-2579

7.2.15 Detector Table

* Detectors are not supported in IOC-2.

Table 38 specifies the format for the detector table. To validate a detector table, it is necessary to
verify the following:
• The field names and types are correct.
• The data values are in the legal ranges.
• The IDs are unique.
• The node, link, and lane references are correct.
• The offset and length are consistent with the setbacks and length of the link.

Table 38: Detector table format.

Column Name Description Allowed Values
ID ID number of the detector. integer: 1 through 2,147,483,647
NODE ID number of the node toward which vehicles

are traveling.
integer: 1 through 2,147,483,647

LINK ID number of the link on which the detector
lies.

integer: 1 through 2,147,483,647

OFFSET Starting position of the detector, measured (in
meters) from NODE.

non-negative floating-point number

LANEBEGIN Lane number of lane at which the detector
begins.

integer: 1 through 255

LANEEND Lane number of lane at which the detector
ends, equal to LANEBEGIN for detector that
lies on single lane.

integer: 1 through 255

LENGTH Length of the detector (in meters). non-negative floating-point number
STYLE Type of the detector. ten characters:

‘PRESENCE’ = sense vehicles on
detector
‘PASSAGE’ = sense vehicles crossing
detector

COORDINATR ID number of coordinators interested in
detector output.

string of coordinator IDs separated by
slashes

NOTES Character string used for data quality
annotations; free format (may be blank).

255 characters

TRANSIMS-LANL-1.0 – Files – May 1999 Page 66
LA-UR – 99-2579

7.2.16 Signal Coordinator Table

* Signal Coordinators are not supported in IOC-2.

Table 39 specifies the format for the signal coordinator table. To validate a signal coordinator
table, it is necessary to verify the following:
• The field names and types are correct.
• The data values are in the legal ranges.
• The IDs are unique.

 Table 39: Signal coordinator table format.

Column Name Description Allowed Values
ID ID number of the signal coordinator. integer: 1 through 2,147,483,647
TYPE Type of coordinator. ten characters: values to be determined
ALGORITHM Control algorithm used by coordinator. ten characters: values to be determined
NOTES Character string used for data quality

annotations; free format (may be blank).
255 characters

TRANSIMS-LANL-1.0 – Files – May 1999 Page 67
LA-UR – 99-2579

7.2.17 Activity Locations

Table 40 specifies the format for the activity location table. To validate an activity location table,
it is necessary to verify the following.
• The field names and types are correct.
• The data values are in the legal ranges.
• The IDs are unique.
• The node and link references are correct.
• The offset is consistent with the setbacks and lengths of the links.
• The layer is consistent with the vehicle types allowed on the link.
• The names of any optional user-defined fields are unique within the table.

Table 40: Activity locations.

Column Name Description Allowed Values
ID ID number of the activity location. integer: 1 through

2,147,483,647
NODE ID number of the node toward which vehicles

are traveling (the location is taken to be on the
right side of the street when headed this
direction).

integer: 1 through
2,147,483,647

LINK ID number of the link on which the activity
location lies.

integer: 1 through
2,147,483,647

OFFSET Location of the entrance from the link to the
activity location, measured (in meters) from
NODE.

non-negative floating-point
number

LAYER The modal “layer” on which the activity
location resides.

string of characters: “AUTO” or
“BUS” or “LIGHTRAIL” or
“WALK”

EASTING The x-coordinate of the node (in meters, UTM
coordinate system).

floating-point number

NORTHING The y-coordinate of the node (in meters, UTM
coordinate system).

floating-point number

ELEVATION The z-coordinate of the node (in meters, UTM
coordinate system).

floating-point number

optional field 1 First optional field related to land use. floating-point number
optional field 2 Second optional field related to land use. floating-point number
optional field n The n-th optional field related to land use. floating point number
NOTES Character string used for data quality

annotations; free format (may be blank).
255 characters

A maximum of 20 user-defined fields may optionally be included in the table between the
ELEVATION and NOTES fields. These optional fields are typically related to land use, but could
be anything the user wishes to specify about an activity location. The column names may be up to
32 characters in length. The presence of any optional fields is detected by the
NetReadActivityLocationHeader() function. This implies that the header for the activity

TRANSIMS-LANL-1.0 – Files – May 1999 Page 68
LA-UR – 99-2579

location table must be read by this function rather than by NetReadHeader() or
NetSkipHeader(), whether or not optional fields are included.

7.2.18 Process Links

Table 41 specifies the format for a process link table. To validate a process link table, it is
necessary to verify the following:
• The field names and types are correct.
• The data values are in the legal ranges.
• The IDs are unique.
• The “from” and “to” accessory references are correct.

Table 41: Process links.

Column Name Description Allowed Values
ID ID number of the virtual link. integer: 1 through

2,147,483,647
FROMID ID number of the accessory from which the

virtual link leaves.
integer: 1 through
2,147,483,647

FROMTYPE Type of accessory from which the virtual link
leaves.

string of characters:
“ACTIVITY” or “PARKING”
or “TRANSIT”

TOID ID number of the accessory to which the
virtual link leads.

integer: 1 through
2,147,483,647

TOTYPE Type of accessory to which the virtual link
leads.

string of characters:
“ACTIVITY” or “PARKING”
or “TRANSIT”

DELAY The time delay (measured in seconds) incurred
when traveling across the virtual link.

non-negative floating-point
number

COST The cost (measured in arbitrary units)
incurred when traveling across the virtual
link.

non-negative floating-point
number

NOTES Character string used for data quality
annotations; free format (may be blank).

255 characters

Note that although the costs are measured in arbitrary units, the units must be the same for the
whole data table.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 69
LA-UR – 99-2579

7.2.19 Study Area Link Table

Table 42 specifies the format for the study area link table. To validate a study area link table, it is
necessary to verify the following:
• The field names and types are correct.
• The data values are in the legal ranges.
• The link references are correct.

Table 42: Study area link table format.

Column Name Description Allowed Values
ID ID number of the link. integer: 1 through 2,147,483,647
BUFFER Whether the link is in the buffer area or the study

area.
one character:
‘Y’ = in buffer area
‘N’ = in study area

NOTES Character string used for data quality annotations;
free format (may be blank).

255 characters

7.3 Interface Functions

The network subsystem has C structures and utility functions for reading and writing network data
files.

7.3.1 NetReadHeader
Signature: int NetReadHeader(FILE * file, TNetHeader * header)

Description: Read a header from a network table.

Argument: file – FILE pointer for the network data table.
header – pointer to TNetHeader structure into which the header is read.

Return Value: Return nonzero if the header was successfully read, or zero if not.

7.3.2 NetWriteHeader
Signature: int NetWriteHeader(FILE * file, const TNetHeader *

header)

Description: Write a header from a network table.

Argument: file – FILE pointer for the network data table.
header – pointer to TNetHeader structure from which the header is
written.

Return Value: Return nonzero if the header was successfully written, or zero if not.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 70
LA-UR – 99-2579

7.3.3 NetSkipHeader
Signature: int NetSkipHeader(FILE * file)

Description: Skip a header from a network table.

Argument: file – FILE pointer for the network data table.

Return Value: Return nonzero if the header was successfully skipped, or zero if not.

7.3.4 NetReadActivityLocationHeader
Signature: int NetReadActivityLocationHeader(FILE* file, TNetHeader*

header, TNetActivityLocationRecord* record)

Description: Read a header from an activity location table.

Argument: file – FILE pointer for the network data table.
header – pointer to TNetHeader structure into which the header is read.
record – pointer to TNetActivityLocationRecord structure which is

 initialized based on the header contents.

Return Value: Return nonzero if the header was successfully read, or zero if not.

7.3.5 NetReadNode
Signature: int NetReadNode(FILE * file, TNetNodeRecord * record)

Description: Read a record from a node table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetNodeRecord structure into which the record is

read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.6 NetWriteNode
Signature: int NetWriteNode(FILE * file, const TNetNodeRecord *

record)

Description: Write a record to a node table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetNodeRecord structure from which the record is

written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 71
LA-UR – 99-2579

7.3.7 NetReadLink
Signature: int NetReadLink(FILE * file, TNetLinkRecord * record)

Description: Read a record from a link table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetLinkRecord structure into which the record is

read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.8 NetWriteLink
Signature: int NetWriteLink(FILE * file, const TNetLinkRecord *

record)

Description: Write a record to a link table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetLinkRecord structure from which the record is

written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.9 NetReadSpeed
Signature: int NetReadSpeed(FILE * file, TNetSpeedRecord * record)

Description: Read a record from a speed table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetSpeedRecord structure into which the record is

read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.10 NetWriteSpeed
Signature: int NetWriteSpeed(FILE * file, const TNetSpeedRecord *

record)

Description: Write a record to a speed table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetSpeedRecord structure from which the record is

written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 72
LA-UR – 99-2579

7.3.11 NetReadPocket
Signature: int NetReadPocket(FILE * file, TNetPocketRecord * record)

Description: Read a record from a pocket lane table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetPocketRecord structure into which the record is

read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.12 NetWritePocket
Signature: int NetWritePocket(FILE * file, const TNetPocketRecord *

record)

Description: Write a record to a pocket lane table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetPocketRecord structure from which the record is

written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.13 NetReadLaneUse
Signature: int NetReadLaneUse(FILE * file, TNetLaneUseRecord *

record)

Description: Read a record from a lane use table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetLaneUseRecord structure into which the record is

read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.14 NetWriteLaneUse
Signature: int NetWriteLaneUse(FILE * file, const TNetLaneUseRecord

* record)

Description: Write a record to a lane use table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetLaneUseRecord structure from which the record

is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 73
LA-UR – 99-2579

7.3.15 NetReadParking
Signature: int NetReadParking(FILE * file, TNetParkingRecord *

record)

Description: Read a record from a parking table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetParkingRecord structure into which the record

is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.16 NetWriteParking
Signature: int NetWriteParking(FILE * file, const TNetParkingRecord

* record)

Description: Write a record to a parking table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetParkingRecord structure from which the record

is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.17 NetReadBarrier
Signature: int NetReadBarrier(FILE * file, TNetBarrierRecord *

record)

Description: Read a record from a barrier table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetBarrierRecord structure into which the record

is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.18 NetWriteBarrier
Signature: int NetWriteBarrier(FILE * file, const TNetBarrierRecord

* record)

Description: Write a record to a barrier table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetBarrierRecord structure from which the record

is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 74
LA-UR – 99-2579

7.3.19 NetReadTransitStop
Signature: int NetReadTransitStop(FILE * file,

TNetTransitStopRecord* record)

Description: Read a record from a transit stop table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetTransitStopRecord structure into which the

record is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.20 NetWriteTransitStop
Signature: int NetWriteTransitStop(FILE * file, const

TNetTransitStopRecord * record)

Description: Write a record to a transit stop table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetTransitStopRecord structure from which the

record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.21 NetReadLaneConnectivity
Signature: int NetReadLaneConnectivity(FILE * file,

TNetLaneConnectivityRecord * record)

Description: Read a record from a lane connectivity table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetLaneConnectivityRecord structure into which

the record is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.22 NetWriteLaneConnectivity
Signature: int NetWriteLaneConnectivity(FILE * file, const

TNetLaneConnectivityRecord * record)

Description: Write a record to a lane connectivity table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetLaneConnectivityRecord structure from

which the record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 75
LA-UR – 99-2579

7.3.23 NetReadTurnProhibition
Signature: int NetReadTurnProhibition(FILE * file,

TNetTurnProhibitionRecord * record)

Description: Read a record from a turn prohibition table.

Argument: file – FILE pointer for the network data table
record – pointer to TNetTurnProhibitionRecord structure into which

the record is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.24 NetWriteTurnProhibition
Signature: int NetWriteTurnProhibition(FILE * file, const

TNetTurnProhibitionRecord * record)

Description: Write a record to a turn prohibition table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetTurnProhibitionRecord structure from which

the record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.25 NetReadUnsignalizedNode
Signature: int NetReadUnsignalizedNode(FILE * file,

TNetUnsignalizedNodeRecord * record)

Description: Read a record from an unsignalized node table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetUnsignalizedNodeRecord structure into which

the record is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.26 NetWriteUnsignalizedNode
Signature: int NetWriteSignalizedNode(FILE * file, const

TNetUnsignalizedNodeRecord * record)

Description: Write a record to an unsignalized node table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetUnsignalizedNodeRecord structure from

which the record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 76
LA-UR – 99-2579

7.3.27 NetReadSignalizedNode
Signature: int NetReadSignalizedNode(FILE * file,

TNetSignalizedNodeRecord * record)

Description: Read a record from a signalized node table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetSignalizedNodeRecord structure into which

the record is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.28 NetWriteSignalizedNode
Signature: int NetWriteSignalizedNode(FILE * file, const

TNetSignalizedNodeRecord * record)

Description: Write a record to a signalized node table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetSignalizedNodeRecord structure from which

the record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.29 NetReadPhasingPlan
Signature: int NetReadPhasingPlan(FILE * file, TNetPhasingPlanRecord

* record)

Description: Read a record from a phasing plan table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetPhasingPlanRecord structure into which the

record is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.30 NetWritePhasingPlan
Signature: int NetWritePhasingPlan(FILE * file, const

TNetPhasingPlanRecord * record)

Description: Write a record to a phasing plan table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetPhasingPlanRecord structure from which the

record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 77
LA-UR – 99-2579

7.3.31 NetReadTimingPlan
Signature: int NetReadTimingPlan(FILE * file, TNetTimingPlanRecord *

record)

Description: Read a record from a timing plan table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetTimingPlanRecord structure into which the

record is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.32 NetWriteTimingPlan
Signature: int NetWriteTimingPlan(FILE * file, const

TNetTimingPlanRecord * record)

Description: Write a record to a timing plan table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetTimingPlanRecord structure from which the

record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.33 NetReadDetector
Signature: int NetReadDetector(FILE * file, TNetDetectorRecord *

record)

Description: Read a record from a detector table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetDetectorRecord structure into which the record

is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.34 NetWriteDetector
Signature: int NetWriteDetector(FILE * file, const

TNetDetectorRecord * record)

Description: Write a record to a detector table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetDetectorRecord structure from which the

record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 78
LA-UR – 99-2579

7.3.35 NetReadSignalCoordinator
Signature: int NetReadSignalCoordinator(FILE * file,

TNetSignalCoordinatorRecord * record)

Description: Read a record from a signal coordinator table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetSignalCoordinatorRecord structure into

which the record is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.36 NetWriteSignalCoordinator
Signature: int NetWriteSignalCoordinator(FILE * file, const

TNetSignalCoordinatorRecord * record)

Description: Write a record to a signal coordinator table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetSignalCoordinatorRecord structure from

which the record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.37 NetReadActivityLocation
Signature: int NetReadActivityLocation(FILE * file,

TNetActivityLocationRecord * record)

Description: Read a record from an activity location table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetActivityLocationRecord structure into which

the record is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.38 NetWriteActivityLocation
Signature: int NetWriteActivityLocation(FILE * file, const

TNetActivityLocationRecord * record)

Description: Write a record to a process link table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetActivityLocationRecord structure from

which the record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 79
LA-UR – 99-2579

7.3.39 NetReadProcessLink
Signature: int NetReadProcessLink(FILE * file, TNetProcessLinkRecord

* record)

Description: Read a record from a process link table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetProcessLinkRecord structure into which the

record is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.40 NetWriteProcessLink
Signature: int NetWriteProcessLink(FILE * file, const

TNetProcessLinkRecord * record)

Description: Write a record to a process link table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetProcessLinkRecord structure from which the

record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.41 NetReadStudyAreaLink
Signature: int NetReadStudyAreaLink(FILE * file,

TNetStudyAreaLinkRecord * record)

Description: Read a record from a study area link table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetStudyAreaLinkRecord structure into which the

record is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.42 NetWriteStudyAreaLink
Signature: int NetWriteStudyAreaLink(FILE * file, const

TNetStudyAreaLinkRecord * record)

Description: Write a record to a study area link table.

Argument: file – FILE pointer for the network data table.
record – pointer to TNetStudyAreaLinkRecord structure from which the

record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 80
LA-UR – 99-2579

7.4 Data Structures

7.4.1 TNetHeader

This structure is used for the network table header.

typedef struct
{
/** The field names. **/
INT8 fFields[512];

} TNetHeader;

7.4.2 TNetNodeRecord

This structure is used for network node table records.

typedef struct
{
/** The ID field. **/
INT32 fId;

/** The EASTING field. **/
REAL64 fEasting;

/** The NORTHING field. **/
REAL64 fNorthing;

/** The ELEVATION field. **/
REAL64 fElevation;

/** The NOTES field. **/
INT8 fNotes[256];

} TNetNodeRecord

7.4.3 TNetLinkRecord

This structure isused for network link table records.

typedef struct
{
/** The ID field. **/
INT32 fId;

/** The NAME field. **/
INT8 fName[51];

/** The NODEA field. **/
INT32 fNodea;

/** The NODEB field. **/
INT32 fNodeb;

/** The PERMLANESA field. **/

TRANSIMS-LANL-1.0 – Files – May 1999 Page 81
LA-UR – 99-2579

INT32 fPermlanesa;

/** The PERMLANESB field. **/
INT32 fPermlanesb;

/** The LEFTPCKTSA field. **/
INT32 fLeftpcktsa;

/** The LEFTPCKTSB field. **/
INT32 fLeftpcktsb;

/** The RIGHTPCKTSA field. **/
INT32 fRightpcktsa;

/** The RIGHTPCKTSB field. **/
INT32 fRightpcktsb;

/** The TWOWAYTURN field. **/
INT8 fTwowayturn[2];

/** The LENGTH field. **/
REAL64 fLength;

/** The GRADE field. **/
REAL64 fGrade;

/** The SETBACKA field. **/
REAL64 fSetbacka;

/** The SETBACKB field. **/
REAL64 fSetbackb;

/** The CAPACITYA field. **/
INT32 fCapacitya;

/** The CAPACITYB field. **/
INT32 fCapacityb;

/** The SPEEDLMTA field. **/
REAL64 fSpeedlmta;

/** The SPEEDLMTB field. **/
REAL64 fSpeedlmtb;

/** The FREESPDA field. **/
REAL64 fFreespda;

/** The FREESPDB field. **/
REAL64 fFreespdb;

/** The FUNCTCLASS field. **/
INT8 fFunctclass[11];

/** The THRUA field. **/
INT32 fThrua;

/** The THRUB field. **/
INT32 fThrub;

TRANSIMS-LANL-1.0 – Files – May 1999 Page 82
LA-UR – 99-2579

/** The COLOR field. **/
INT32 fColor;

/** The VEHICLE field. **/
INT8 fVehicle[101];

/** the NOTES field. **/
INT8 fNotes[256];

} TNetNodeRecord;

7.4.4 TNetSpeedRecord

This structure is used for network speed table records.

typedef struct
{
/** The LINK field. **/
INT32 fLink;

/** The NODE field. **/
INT32 fNode;

/** The SPEEDLMT field. **/
REAL64 fSpeedlmt;

/** The FREESPD field. **/
REAL64 fFreespd;

/** The VEHICLE field. **/
INT8 fVehicle[101];

/** The STARTTIME field. **/
INT8 fStarttime[9];

/** The ENDTIME field. **/
INT8 fEndtime[9];

/** The NOTES field. **/
INT8 fNotes[256]

} TNetSpeedRecord;

7.4.5 TNetPocketRecord

This structure is used for network pocket lane table records.

typedef struct
{
/** The ID field. **/
INT32 fId;

/** The NODE field. **/
INT32 fNode;

/** The LINK field. **/
INT32 fLink;

TRANSIMS-LANL-1.0 – Files – May 1999 Page 83
LA-UR – 99-2579

/** The OFFSET field. **/
REAL64 fOffset;

/** The LANE field. **/
INT32 fLane;

/** The STYLE field. **/
INT8 fStyle[2];

/** The LENGTH field. **/
REAL64 fLength;

/** The NOTES field. **/
INT8 fNotes[256];

} TNetPocketRecord;

7.4.6 TNetLaneUseRecord

This structure is used for network lane use table records.

typedef struct
{
/** The NODE field. **/
INT32 fNode;

/** The LINK field. **/
INT32 fLink;

/** The LANE field. **/
INT32 fLane;

/** The VEHICLE field. **/
INT8 fVehicle[101];

/** The RESTRICT field. **/
INT8 fRestrict[2];

/** The STARTTIME field. **/
INT8 fStarttime[9];

/** The ENDTIME field. **/
INT8 fEndtime[9];

/** The NOTES field. **/
INT8 fNotes[256];

} TNetLaneUseRecord

7.4.7 TNetParkingRecord

This structure is used for network parking table records.

typedef struct
{
/** The ID field. **/

TRANSIMS-LANL-1.0 – Files – May 1999 Page 84
LA-UR – 99-2579

INT32 fId;

/** The NODE field. **/
INT32 fNode;

/** The LINK field. **/
INT32 fLink;

/** The OFFSET field. **/
REAL64 fOffset;

/** The STYLE field. **/
INT8 fStyle[6];

/** The CAPACITY field. **/
INT32 fCapacity;

/** The GENERIC field. **/
INT8 fGeneric[2];

/** The VEHICLE field. **/
INT8 fVehicle[101];

/** The STARTTIME field. **/
INT8 fStarttime[9];

/** The ENDTIME field. **/
INT8 fEndtime[9];

/** The NOTES field. **/
INT8 fNotes[256];

} TNetParkingRecord;

7.4.8 TNetBarrierRecord

This structure is used for network barrier table records.

typedef struct
{
/** The ID field. **/
INT32 fId;

/** The NODE field. **/
INT32 fNode;

/** The LINK field. **/
INT32 fLink;

/** The OFFSET field. **/
REAL64 fOffset;

/** The LANE field. **/
INT32 fLane;

/** The STYLE field. **/
INT8 fStyle[11];

TRANSIMS-LANL-1.0 – Files – May 1999 Page 85
LA-UR – 99-2579

/** The LENGTH field. **/
REAL64 fLength;

/** The NOTES field. **/
INT8 fNotes[256];

} TNetBarrierRecord;

7.4.9 TNetTransitStopRecord

This structure is used for network transit stop table records.

typedef struct
{
/** The ID field. **/
INT32 fId;

/** The NAME field. **/
INT8 fName[51];

/** The NODE field. **/
INT32 fNode;

/** The LINK field. **/
INT32 fLink;

/** The OFFSET field. **/
REAL64 fOffset;

/** The VEHICLE field. **/
INT8 fVehicle[101];

/** The STYLE field. **/
INT8 fStyle[11];

/** The CAPACITY field. **/
INT32 fCapacity;

/** The NOTES field. **/
INT8 fNotes[256];

} TNetTransitStopRecord;

7.4.10 TNetLaneConnectivityRecord

This structure is used for network lane connectivity table records.

typedef struct
{
/** The NODE field. **/
INT32 fNode;

/** The INLINK field. **/
INT32 fInlink;

/** The INLANE field. **/
INT32 fInlane;

TRANSIMS-LANL-1.0 – Files – May 1999 Page 86
LA-UR – 99-2579

/** The OUTLINK field. **/
INT32 fOutlink;

/** The OUTLANE field. **/
INT32 fOutlane;

/** The NOTES field. **/
INT8 fNotes[256];

} TNetLaneConnectivityRecord;

7.4.11 TNetTurnProhibitionRecord

This structure is used for network turn prohibition table records.

typedef struct
{
/** The NODE field. **/
INT32 fNode;

/** The INLINK field. **/
INT32 fInlink;

/** The OUTLINK field. **/
INT32 fOutlink;

/** The STARTTIME field. **/
INT8 fStarttime[9];

/** The ENDTIME field. **/
INT8 fEndtime[9];

/** The NOTES field. **/
INT8 fNotes[256];

} TNetTurnProhibitionRecord;

7.4.12 TNetUnsignalizedNodeRecord

This structure is used for network unsignalized node table records.

typedef struct
{
/** The NODE field. **/
INT32 fNode;

/** The INLINK field. **/
INT32 fInlink;

/** The SIGN field. **/
INT8 fSign[2];

/** The NOTES field. **/
INT8 fNotes;

} TNetUnsignalizedNodeRecord;

TRANSIMS-LANL-1.0 – Files – May 1999 Page 87
LA-UR – 99-2579

7.4.13 TNetSignalizedNodeRecord

This structure is used for network signalized node table records.

typedef struct
{
/** The NODE field. **/
INT32 fNode;

/** The TYPE field. **/
INT8 fType[2];

/** The PLAN field. **/
INT32 fPlan;

/** The OFFSET field. **/
REAL64 fOffset;

/** The STARTTIME field. **/
INT8 fStarttime[9];

/** The COORDINATR field. **/
INT32 fCoordinatr;

/** The RING field. **/
INT8 fRing[2];

/** The ENTRY field. **/
INT8 fEntry[2];

/** The NOTES field. **/
INT8 fNotes[256];

} TNetSignalizedNodeRecord;

7.4.14 TNetPhasingPlanRecord

This structure is used for network phasing plan table records.

typedef struct
{
/** The NODE field. **/
INT32 fNode;

/** The PLAN field. **/
INT32 fPlan;

/** The PHASE field. **/
INT32 fPhase;

/** The INLINK field. **/
INT32 fInlink;

/** The OUTLINK field. **/
INT32 fOutlink;

/** The PROTECTION field. **/
INT8 fProtection[2];

TRANSIMS-LANL-1.0 – Files – May 1999 Page 88
LA-UR – 99-2579

/** The NOTES field. **/
INT8 fNotes[256];

} TNetPhasingPlanRecord;

7.4.15 TNetTimingPlanRecord

This structure is used for network timing plan table records.

typedef struct
{
/** The PLAN field. **/
INT32 fPlan;

/** The PHASE field. **/
INT32 fPhase;

/** The NEXTPHASES field. **/
INT8 fNextphases[21];

/** The GREENMIN field. **/
REAL64 fGreenmin;

/** The GREENMAX field. **/
REAL64 fGreenmax;

/** The GREENEXT field. **/
REAL64 fGreenext;

/** The YELLOW field. **/
REAL64 fYellow;

/** The REDCLEAR field. **/
REAL64 fRedclear;

/** The GROUPFIRST field. **/
INT32 fGroupfirst;

/** The NOTES field. **/
INT8 fNotes[256];

} TNetTimingPlanRecord;

7.4.16 TNetDetectorRecord

This structure is used for network detector table records.

typedef struct
{
/** The ID field. **/
INT32 fId;

/** The NODE field. **/
INT32 fNode;

/** The LINK field. **/

TRANSIMS-LANL-1.0 – Files – May 1999 Page 89
LA-UR – 99-2579

INT32 fLink;

/** The OFFSET field. **/
REAL64 fOffset;

/** The LANEBEGIN field. **/
INT32 fLanebegin;

/** The LANEEND field. **/
INT32 fLaneend;

/** The LENGTH field. **/
REAL64 fLength;

/** The STYLE field. **/
INT8 fStyle[11];

/** The COORDINATR field. **/
INT8 fCoordinatr[51];

/** The NOTES field. **/
INT8 fNotes[256];

} TNetDetectorRecord;

7.4.17 TNetSignalCoordinatorRecord

This structure is used for network signal coordinator table records.

typedef struct
{
/** The ID field. **/
INT32 fId;

/** The TYPE field. **/
INT8 fType[11];

/** The ALGORITHM field. **/
INT8 fAlgorithm[11];

/** The NOTES field. **/
INT8 fNotes;

} TNetSignalCoordinatorRecord;

7.4.18 TNetActivityLocationRecord

This structure is used for activity location table records.

/** Maximum allowed optional user-defined fields in activity location data.
**/
#define ACTIVITY_MAX_USER 20

typedef struct
{
/** The ID field. **/
INT32 fId;

TRANSIMS-LANL-1.0 – Files – May 1999 Page 90
LA-UR – 99-2579

/** The NODE field. **/
INT32 fNode;

/** The LINK field. **/
INT32 fLink;

/** The OFFSET field. **/
REAL64 fOffset;

/** The LAYER field. **/
INT8 fLayer[11];

/** The EASTING field. **/
REAL64 fEasting;

/** The NORTHING field. **/
REAL64 fNorthing;

/** The ELEVATION field. **/
REAL64 fElevation;

/** The number of values in the fUserName and fUser Data arrays.
INT32 fNumberUser;

/** Optional array of user-defined real values. The number of values
/* in the array is variable, but must be the same in each record.
/* The data will typically be related to land use.
/* The optional fields immediately precede the NOTES field. **/
REAL64 fUserData[ACTIVITY_MAX_USER];

/** The names of the fields in fUser Data. **/
INT8 fUserNames[ACTIVITY_MAX_USER] [32];

/** The NOTES field. **/
INT8 fNotes[256];

} TNetActivityLocationRecord;

7.4.19 TNetProcessLinkRecord

This structure is used for process link table records.

typedef struct
{
/** The ID field. **/
INT32 fId;

/** The FROMID field. **/
INT32 fFromid;

/** The FROMTYPE field. **/
INT8 fFromtype[11];

/** The TOID field. **/
INT32 fToid;

/** The TOTYPE field. **/

TRANSIMS-LANL-1.0 – Files – May 1999 Page 91
LA-UR – 99-2579

INT8 fTotype[11];

/** The DELAY field. **/
REAL64 fDelay;

/** The COST field. **/
REAL64 fCost;

/** The NOTES field. **/
INT8 fNotes[256];

} TNetProcessLinkRecord;

7.4.20 TNetStudyAreaLinkRecord

This structure is used for network study area link table records.

typedef struct
{
/** The ID field. **/
INT32 fId;

/** The BUFFER field. **/
INT8 fBuffer[2];

/** The NOTES field. **/
INT8 fNotes;

} TNetStudyAreaLinkRecord;

7.5 Utility Programs

Several utility programs related to network data files are available.

7.5.1 ReadNetwork

The ReadNetwork application reads a specified set of network tables into memory and constructs
C++ network objects out of it. It is useful for verifying that a network can be read by the route
planner and microsimulation without actually running those programs. It takes a configuration file
as its only argument.

7.5.2 ValidateNetwork

The ValidateNetwork application reads a specified set of network tables into memory and looks for
errors, inconsistencies, and suspicious data in them. It is useful for checking the validity of
network data files before using them in a simulation. It takes a configuration file and a log
(output) file as its two arguments. The configuration file key NET_VALIDATE_WARNINGS
should be set to zero or one, depending upon whether the tool should list warnings in addition to
errors.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 92
LA-UR – 99-2579

7.5.3 SetupNetwork

The SetupNetwork script copies a set of empty and test network tables into a specified directory. It
is useful for building a new network database directory. It takes the name of the directory as its
only argument.

7.5.4 CleanupNetwork

The CleanupNetwork script removes a set of tables created by SetupNetwork. It takes the name of
the directory as its argument.

7.6 Files

Table 43: Network library files.

Type File Name Description
Binary Files libTIO.a TRANSIMS Interfaces library
Utilities ReadNetwork Network data file reader

ValidateNetwork Network data file validator
SetupNetwork Tool for creating empty and test network data files
CleanupNetwork Tool for removing empty and test network data files

Source Files netio.c Defines network data structures and interface functions
netio.h Network interface functions source file

Example Files Test*.tbl Test network tables
Test.config Configuration file for test network

7.7 Configuration Keys

Table 44 below lists the TRANSIMS configuration file keys that specify the location of network
data files.

Table 44: Network file configuration keys.

Configuration Key Description
NET_DIRECTORY Directory where the network files reside.
NET_NODE_TABLE Node table name.
NET_LINK_TABLE Link table name.
NET_POCKET_LANE_TABLE Pocket lane table name.
NET_PARKING_TABLE Parking table name.
NET_LANE_CONNECTIVITY_TABLE Lane connectivity table name.
NET_UNSIGNALIZED_NODE_TABLE Unsignalized node table name.
NET_SIGNALIZED_NODE_TABLE Signalized node table name.
NET_PHASING_PLAN_TABLE Phasing plan table name.
NET_TIMING_PLAN_TABLE Timing plan table name.
NET_SPEED_TABLE Speed table name.
NET_LANE_USE_TABLE Lane use table name.
NET_TRANSIT_STOP_TABLE Transit stop table name.
NET_SIGNAL_COORDINATOR_TABLE Signal coordinator table name.
NET_DETECTOR_TABLE Detector table name.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 93
LA-UR – 99-2579

Configuration Key Description
NET_TURN_PROHIBITION_TABLE Turn prohibition table name.
NET_BARRIER_TABLE Barrier table name.
NET_ACTIVITY_LOCATION_TABLE Activity location table name.
NET_PROCESS_LINK_TABLE Process link table name.
NET_STUDY_AREA_LINKS_TABLE Study area links table name.
NET_LINK_MEDIAN_HALFWIDTH Default half-width (meters) of the median between lanes on

a link.
* To correspond with the IOC-2 TRANSIMS
Visualization tool, this parameter must be assigned a value
of 0.5 * GBL_LANE_WIDTH.

7.8 Examples

Figure 2 shows the layout of the network used for testing various TRANSIMS modules and Figure
3 gives the configuration file for the network. This network contains most of the network objects
available in TRANSIMS; it can be used for testing code or in simulations of traffic. Table 44 lists
the configuration keys for this network and Table 45 through Table 62 list the contents of the
tables.

Figure 2: Layout of test network.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 94
LA-UR – 99-2579

1

1

Node #8606 Node #8524

Node #8521Node #8523

Node #8600

Node #8525

Node #14136

Node #8520

Node #14141

Node # 14142

Node #8522

Node #8610

Node #8608

Node #14340

Node #8603

0

2

3 4 5

6

1

1

234

1

2

1

2

3

3

2

4 5

6

0
1

3 2

1

1

2

3

2

3

4

5

6

1

2 1

1 2 3

543211234

1

2

1

2

3

1123 2123 21 3

1

2

2

1

1

2

2

1 1

1

1

2

3

2

3

4

5

6

1

1

2

2

3

4

1

1

2

1

2

211 32
1

1

2

2

2112

1

1

elev. 1000m.

northing 500m.
easting 500m.

elev. 900m.

elev. 1000m.
elev. 1000m. elev. 1000m.

elev. 1000m.

elev. 1000m.

elev. 1000m.
elev. 1000m.

elev. 1000m.elev. 750m.

elev. 1000m.
elev. 1000m.

elev. 1000m.

elev. 1000m.

6.7% grade

4.
3%

 g
ra

de

16.7% grade

1000m.

1500m.

1000m.

1000m.

500m. 1000m. 1000m. 1000m.

3m.

6m.

6m.

6m.

9m.

6m.

6m.9m.

9m.

18m.

3m.
3m.

3m.

3m.

12m.

18m. 6m.

12m.

6m.6m.

3m.

9m.

9m.

12m. 13.5m.

13.5m. 13.5m.

13.5m.

0m.

6m.

6m.

6m.6m.6m.

6m.

6m.

200m.

100m.450m.

100m.

3m.

300m.

200m.
Link #11487 Link #11495

Link #28800
Link #12384

Link #2750
Link #2751

Link #11486

Link #2752
Link #2753

Link #2754

Li
nk

 #
27

55
Li

nk
 #

27
56

Li
nk

 #
97

05
Li

nk
 #

97
06

Link #9704

Link #12407

Link #2758Link #2757
Link #2759

Li
nk

 #
28

80
4

3m.

LIGHTRAIL

LIGHTRAIL

LI
G

H
T

R
A

IL
/A

U
T

O

LIG
H

T
R

A
IL/A

U
T

O

AUTO
AUTO

AUTO
AUTO
AUTO

AUTO

AUTO

AUTO

AUTO
AUTO

AUTO
AUTO
AUTO
AUTO
AUTO

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

LI
G

H
T

R
A

IL
/A

U
T

O
A

U
T

O
A

U
T

O

LIG
H

T
R

A
IL/A

U
T

O
A

U
T

O

LIGHTRAIL/AUTO

LIGHTRAIL/AUTO

LIGHTRAIL/BUS

AUTO

AUTO/BUSAUTO

LIGHTRAIL/BUS
AUTO/BUS

LIGHTRAIL/BUS

LIGHTRAIL/BUS
AUTO/HOV3/BUS

AUTO/BUS

A
U

T
O

/B
U

S

A
U

T
O

/B
U

S
A

U
T

O
/B

U
S

A
U

T
O

/B
U

S

A
U

T
O

/B
U

S

A
U

T
O

/B
U

S
A

U
T

O
/B

U
S

AUTO

AUTO
AUTO

AUTO
AUTO

AUTO
AUTO
AUTO

A
U

T
O

/B
U

S
A

U
T

O
/B

U
S

A
U

T
O

/B
U

S

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

AUTO/BUS
AUTO/BUS

AUTO/BUS
AUTO/BUS

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

A
U

T
O

AUTO
AUTO

AUTO
AUTOAUTO

AUTO

AUTO
AUTO

AUTO

speed limit 20 m/s
(buses 15 m/s)

speed limit 15 m/s

speed limit 20 m/s

Parking #1002

300m.

Parking #1001

400m.

Parking #1003

200m.

Parking #1004
200m.

Barrier #9001

450m.

200m.

Stop #3005

Stop #3002
Stop #3003

350m.

650m.

650m.

Stop #3004

600m.

Stop #3001400m.

Detector #5001

Detector #5002

Detector #5005

250m.

300m.

350m.

3m.

3m.

3m.25%
 grade

speed limit 20 m/s
(buses 15 m/s)

AUTO/TAXI

AUTO

Parking #1005

Parking #1006

Stop #3006

TRANSIMS-LANL-1.0 - Files - May 1999 Page 95
LA-UR – 99-xxx

Figure 3: Test network configuration file.

Network subsystem configuration keys for the test network.

The directory where the network files reside.
NET_DIRECTORY /home/projects/transims/networks/test

The node table name.
NET_NODE_TABLE Test_Node_Table

The link table name.
NET_LINK_TABLE Test_Link_Table

The pocket lane table name.
NET_POCKET_LANE_TABLE Test_Pocket_Lane_Table

The parking table name
NET_PARKING_TABLE Test_Parking_Table

The lane connectivity table name.
NET_LANE_CONNECTIVITY_TABLE Test_Lane_Connectivity_Table

The unsignalized node table name.
NET_UNSIGNALIZED_NODE_TABLE Test_Unsignalized_Node_Table

The signalized node table name.
NET_SIGNALIZED_NODE_TABLE Test_Signalized_Node_Table

The phasing plan table name.
NET_PHASING_PLAN_TABLE Test_Phasing_Plan_Table

The timing plan table name.
NET_TIMING_PLAN_TABLE Test_Timing_Plan_Table

The speed table name.
NET_SPEED_TABLE Test_Speed_Table

The lane use table name.
NET_LANE_USE_TABLE Test_Lane_Use_Table

The transit stop table name.
NET_TRANSIT_STOP_TABLE Test_Transit_Stop_Table

The signal coordinator table name.
NET_SIGNAL_COORDINATOR_TABLE Test_Signal_Coordinator_Table

The detector table name.
NET_DETECTOR_TABLE Test_Detector_Table

The turn prohibition table name.
NET_TURN_PROHIBITION_TABLE Test_Turn_Prohibition_Table

The barrier table name.
NET_BARRIER_TABLE Test_Barrier_Table

The activity location table name.
NET_ACTIVITY_LOCATION_TABLE Test_Activity_Location_Table

The process link table name.
NET_PROCESS_LINK_TABLE Test_Process_Link_Table

The study area links table name.
NET_STUDY_AREA_LINKS_TABLE Test_Study_Area_Link_Table

The half-width (meters) of the median on a link.
Default value if this keyword is omitted is 0.5 * GBL_LANE_WIDTH NET_LINK_MEDIAN_HALFWIDTH 1.75

TRANSIMS-LANL-1.0 – Files – May 1999 Page 96
LA-UR – 99-2579

Table 45: Test node table.

ID EASTING NORTHING ELEVATION NOTES
8520 3000 2500 1000
8521 2000 1500 1000
14136 3000 1500 1000
14141 3000 4000 1000
14142 3000 5000 1000
14340 4000 4000 1000
8525 3000 500 1000
8522 2000 4000 1000
8523 1000 1500 1000
8524 2000 500 1000
8606 500 500 900
8603 4000 500 1000
8608 4000 5000 1000
8600 500 4000 750
8610 500 5000 1000

TRANSIMS-LANL-1.0 - Files - May 1999 Page 97
LA-UR – 99-xxx

Table 46: Test link table.

ID NAME NODEA NODEB PERMLANESA PERMLANESB LEFTPCKTSA LEFTPCKTSB RGHTPCKTSA RGHTPCKTSB TWOWAYTURN LENGTH GRADE SETBACKA SETBACKB CAPACITYA CAPACITYB SPEEDLMTA SPEEDLMTB FREESPDA FREESPDB FUNCTCLASS
9704 2nd Street 8521 8523 2 2 0 0 0 0 F 1000 0 3 3 800 1000 20 20 25 25 OTHER
9705 Avenue B 8521 8522 1 1 0 0 0 0 F 2500 0 6 12 800 1000 20 20 25 25 ZONECONN
9706 Avenue B 8521 8524 1 1 0 0 0 0 F 1000 0 6 6 800 1000 20 20 25 25 RAMP
11486 Avenue C 14141 14142 3 3 0 0 0 0 F 1000 0 13.5 6 800 1000 20 20 25 25 FRONTAGE
11487 3rd Street 8522 14141 3 6 0 0 0 0 F 1000 0 3 9 800 1000 20 20 25 25 SECARTER
11495 3rd Street 14141 14340 6 3 0 0 0 0 F 1000 0 18 6 800 1000 20 20 25 25 COLLECTOR
12384 Avenue C 14136 8520 4 4 0 1 0 1 T 1000 0 6 0 800 1000 20 20 25 25 FREEWAY
12407 2nd Street 8521 14136 2 2 0 0 1 0 F 1000 0 3 12 500 500 20 20 25 25 XPRESSWAY
28800 Avenue C 8520 14141 3 4 0 1 0 1 T 1500 0 0 13.5 800 1000 20 20 25 25 PRIARTER
28804 Avenue C 14136 8525 5 4 0 0 0 0 F 1000 0 6 6 800 1000 20 20 25 25 LOCAL
2759 1st Street 8525 8603 2 3 0 0 0 0 F 1000 0 18 6 800 1000 20 20 25 25 LOCAL
2750 Avenue D 8603 14340 2 3 0 0 0 0 F 3500 0 6 13.5 800 1000 20 20 25 25 LOCAL
2751 Avenue D 14340 8608 3 2 0 0 0 0 F 1000 0 13.5 6 800 1000 20 20 25 25 LOCAL
2752 4th Street 8608 14142 2 2 0 0 0 0 F 1000 0 6 9 800 1000 20 20 25 25 LOCAL

2753 4th Street 14142 8610 1 1 0 0 0 0 F 2500 0 9 6 800 1000 20 20 25 25 LIGHTRAIL
2755 Avenue A 8610 8600 2 2 0 0 0 0 F 1000 -25 3 9 800 1000 20 20 25 25 LOCAL
2754 3rd Street 8600 8522 2 4 0 0 0 0 F 1500 16.7 6 3 800 1000 20 20 25 25 LOCAL
2756 Avenue A 8600 8606 3 2 0 0 0 0 F 3500 4.3 9 6 800 1000 20 20 25 25 LOCAL
2757 1st Street 8606 8524 2 2 0 0 0 0 F 1500 6.7 6 3 800 1000 20 20 25 25 LOCAL
2758 1st Street 8524 8525 2 2 0 0 0 0 F 1000 0 3 12 800 1000 20 20 25 25 LOCAL

TRANSIMS-LANL-1.0 - Files - May 1999 Page 98
LA-UR – 99-xxx

Table 47: Test speed table.

LINK NODE SPEEDLMT FREESPD VEHICLE STARTTIME ENDTIME NOTES
2758 8524 15 20 BUS ALL00:00 ALL24:00
2758 8525 15 18 BUS ALL00:00 ALL24:00

Table 48: Test pocket lane table.

ID NODE LINK OFFSET LANE STYLE LENGTH NOTES
85201 8520 12384 0 1 M 100
85206 8520 12384 0 6 M 200
85213 8521 12407 450 3 P 100
141411 14141 28800 0 1 T 200
141416 14141 28800 0 6 T 300

Table 49: Test lane use table.

NODE LINK LANE VEHICLE RESTRICT STARTTIME ENDTIME NOTES
8606 2757 2 AUTO/HOV3 O ALL00:00 ALL24:00
8524 2757 1 LIGHTRAIL R ALL00:00 ALL24:00
8524 2758 1 LIGHTRAIL R ALL00:00 ALL24:00
8524 2758 2 AUTO R ALL00:00 ALL24:00
8525 2758 1 AUTO N ALL00:00 ALL24:00
8525 2758 2 LIGHTRAIL N ALL00:00 ALL24:00
8606 2756 1 LIGHTRAIL R ALL00:00 ALL24:00
8600 2756 1 LIGHTRAIL R ALL00:00 ALL24:00
8600 2755 2 LIGHTRAIL N ALL00:00 ALL24:00
8610 2755 1 LIGHTRAIL R ALL00:00 ALL24:00
14142 2752 1 LIGHTRAIL R ALL00:00 ALL24:00
14142 2752 2 AUTO R ALL00:00 ALL24:00
8608 2752 1 AUTO N ALL00:00 ALL24:00
8608 2752 1 LIGHTRAIL R ALL00:00 ALL24:00

Table 50: Test parking table.

ID NODE LINK OFFSET STYLE CAPACITY GENERIC VEHICLE STARTTIME ENDTIME NOTES
1001 8520 28800 400 LOT 50 T AUTO ALL00:00 ALL24:00
1002 14136 12384 300 PRSTR 10 T AUTO/TAXI ALL00:00 ALL24:00
1003 14136 12407 200 HISTR 10 T ANY ALL00:00 ALL24:00
1004 8521 12407 200 DRVWY 1 F ANY ALL00:00 ALL24:00
1005 8525 2758 370 LOT 1 F BUS ALL00:00 ALL24:00
1006 14142 2752 650 LOT 0 F ANY ALL00:00 ALL24:00

Table 51: Test barrier table.

ID NODE LINK OFFSET LANE STYLE LENGTH NOTES
9001 8600 2756 450 1 BARRIER 200

TRANSIMS-LANL-1.0 – Files – May 1999 Page 99
LA-UR – 99-2579

Table 52: Test transit stop table.

ID NAME NODE LINK OFFSET VEHICLE STYLE CAPACITY NOTES
3001 1st & C NE 8525 2759 400 BUS STOP 25
3002 1st & C SW 8525 2758 350 BUS/LIGHTRAIL STATION 0
3003 1st & B 8524 2757 650 LIGHTRAIL YARD 0
3004 4th & A 8610 2755 600 LIGHTRAIL STOP 200
3005 4th & C 14142 2752 650 BUS/LIGHTRAIL STATION 0
3006 3rd & D 14340 2750 400 BUS STOP 1

Table 53: Test lane connectivity table.

NODE INLINK INLANE OUTLINK OUTLANE NOTES
14141 11487 1 11486 1
14141 11487 2 11486 2
14141 11487 3 11495 1
14141 11487 4 11495 2
14141 11487 5 11495 3
14141 11487 6 28800 3
14141 11486 1 11495 1
14141 11486 2 28800 1
14141 11486 3 28800 2
14141 11486 3 11487 3
14141 11495 1 28800 1
14141 11495 2 28800 2
14141 11495 3 11487 1
14141 11495 4 11487 2
14141 11495 5 11487 3
14141 11495 6 11486 3
14141 28800 1 11487 1
14141 28800 2 11487 2
14141 28800 3 11486 1
14141 28800 4 11486 2
14141 28800 5 11486 3
14141 28800 6 11495 3
8520 12384 2 28800 2
8520 12384 3 28800 3
8520 12384 4 28800 4
8520 12384 5 28800 5
8520 28800 1 12384 1
8520 28800 2 12384 2
8520 28800 3 12384 3
8520 28800 3 12384 4
14136 12407 1 12384 1
14136 12407 2 28804 4
14136 12384 1 28804 1
14136 12384 2 28804 2
14136 12384 3 28804 3
14136 12384 4 28804 4
14136 12384 4 12407 2
14136 28804 1 12407 1
14136 28804 1 12384 2
14136 28804 2 12384 3
14136 28804 3 12384 4
14136 28804 4 12384 5

TRANSIMS-LANL-1.0 – Files – May 1999 Page 100
LA-UR – 99-2579

NODE INLINK INLANE OUTLINK OUTLANE NOTES
14136 28804 5 12384 6
8521 12407 1 9704 1
8521 12407 1 9706 1
8521 12407 2 9704 2
8521 12407 2 9705 1
8521 9704 1 12407 1
8521 9704 1 9705 1
8521 9704 2 12407 2
8521 9704 2 9706 1
8521 9705 1 9706 1
8521 9705 1 9704 2
8521 9705 1 12407 1
8521 9706 1 9705 1
8521 9706 1 12407 2
8521 9706 1 9704 1
14340 2750 1 11495 1
14340 2750 2 11495 2
14340 2750 2 11495 3
14340 2750 3 2751 1
14340 2750 3 2751 2
14340 11495 1 2751 1
14340 11495 2 2751 2
14340 11495 2 2750 1
14340 11495 3 2750 2
14340 2751 1 2750 1
14340 2751 1 11495 4
14340 2751 2 2750 2
14340 2751 2 11495 5
14340 2751 3 11495 6
8608 2751 1 2752 1
8608 2751 2 2752 2
8608 2752 1 2751 1
8608 2752 1 2751 2
8608 2752 2 2751 3
8603 2759 1 2750 1
8603 2759 2 2750 2
8603 2759 3 2750 3
8603 2750 1 2759 1
8603 2750 2 2759 2
8606 2757 1 2756 1
8606 2757 1 2756 2
8606 2757 2 2756 3
8606 2756 1 2757 1
8606 2756 2 2757 2
8610 2753 1 2755 1
8610 2755 1 2753 1
8600 2756 1 2755 1
8600 2756 2 2755 2
8600 2756 2 2754 3
8600 2756 3 2754 4
8600 2754 1 2756 1
8600 2754 2 2755 2
8600 2755 1 2756 1
8600 2755 2 2756 2
8600 2755 1 2754 1

TRANSIMS-LANL-1.0 – Files – May 1999 Page 101
LA-UR – 99-2579

NODE INLINK INLANE OUTLINK OUTLANE NOTES
14142 2753 1 2752 1
14142 11486 3 2752 2
14142 2752 1 2753 1
14142 2752 2 11486 1
8522 2754 1 11487 2
8522 2754 2 11487 3
8522 2754 3 11487 4
8522 2754 4 11487 5
8522 2754 4 9705 1
8522 9705 1 11487 6
8522 11487 1 9705 1
8522 11487 2 2754 1
8522 11487 3 2754 2
8524 2758 1 2757 1
8524 2758 2 2757 2
8524 2758 2 9706 1
8524 9706 1 2757 2
8524 9706 1 2758 2
8524 2757 1 2758 1
8524 2757 2 2758 2
8524 2757 1 9706 1
8525 2758 1 2759 2
8525 2758 2 2759 3
8525 2759 1 2758 1
8525 2759 2 2758 2
8525 2759 2 28804 5
8525 2758 2 28804 1
8525 28804 1 2759 1
8525 28804 2 2759 2
8525 28804 3 2759 3
8525 28804 4 2758 2

TRANSIMS-LANL-1.0 – Files – May 1999 Page 102
LA-UR – 99-2579

Table 54: Test unsignalized node table.

NODE INLINK SIGN NOTES
8520 12384 Y
8520 28800 N
14136 12407 S
14136 12384 N
14136 28804 N
8610 2753 N
8610 2755 N
14142 2753 N
14142 11486 S
14142 2752 N
8608 2751 N
8608 2752 N
8600 2756 N
8600 2754 S
8600 2755 N
8522 2754 N
8522 9705 S
8522 11487 N
14340 2751 S
14340 11495 S
14340 2750 S
8606 2756 N
8606 2757 N
8524 2757 N
8524 2758 N
8524 9706 Y
8525 2758 N
8525 2759 N
8525 28804 S
8603 2759 N
8603 2750 N

Table 55: Test signalized node table.

NODE TYPE PLAN OFFSET STARTTIME COORDINATR RING ENTRY NOTES
14141 T 1 19 ALL00:00 0 S S
8521 A 2 0 ALL18:00 0 S S
8521 A 3 0 WKD07:00 0 S S

TRANSIMS-LANL-1.0 – Files – May 1999 Page 103
LA-UR – 99-2579

Table 56: Test phasing plan table.

NODE PLAN PHASE INLINK OUTLINK PROTECTION NOTES
14141 1 1 11487 11495 U
14141 1 1 11487 28800 P
14141 1 1 11495 11487 U
14141 1 1 11495 11486 P
14141 1 1 11486 11487 S
14141 1 1 28800 11495 S
14141 1 2 11487 28800 P
14141 1 2 11495 11486 P
14141 1 2 11486 11495 P
14141 1 2 28800 11487 P
14141 1 2 28800 11495 S
14141 1 2 11486 11487 S
14141 1 3 11487 28800 P
14141 1 3 28800 11487 P
14141 1 3 28800 11486 U
14141 1 3 28800 11495 P
14141 1 3 11495 11486 S
14141 1 3 11486 11487 S
14141 1 4 11487 28800 P
14141 1 4 11486 11495 U
14141 1 4 11486 28800 U
14141 1 4 11486 11487 P
14141 1 4 28800 11486 U
14141 1 4 28800 11495 P
14141 1 4 11495 11486 S
14141 1 5 11487 11486 P
14141 1 5 11487 28800 P
14141 1 5 11495 28800 P
14141 1 5 11495 11486 S
14141 1 5 11486 11487 P
14141 1 5 28800 11495 P
14141 1 6 11487 28800 P
14141 1 6 11495 28800 P
14141 1 6 11495 11487 U
14141 1 6 11495 11486 P
14141 1 6 11486 11487 S
14141 1 6 28800 11495 P
8521 2 1 9705 9704 U
8521 2 1 9705 9706 U
8521 2 1 9705 12407 U
8521 2 1 9706 9705 U
8521 2 1 9706 12407 U
8521 2 1 9706 9704 U
8521 2 2 12407 9704 U
8521 2 2 12407 9705 U
8521 2 2 12407 9706 U
8521 2 2 9704 12407 U
8521 2 2 9704 9705 U
8521 2 2 9704 9706 U
8521 3 1 9705 9704 U
8521 3 1 9705 9706 U
8521 3 1 9705 12407 U

TRANSIMS-LANL-1.0 – Files – May 1999 Page 104
LA-UR – 99-2579

NODE PLAN PHASE INLINK OUTLINK PROTECTION NOTES
8521 3 1 9706 9705 U
8521 3 1 9706 12407 U
8521 3 1 9706 9704 U
8521 3 2 12407 9706 P
8521 3 2 9704 9705 P
8521 3 3 12407 9704 U
8521 3 3 12407 9705 U
8521 3 3 12407 9706 U
8521 3 3 9704 12407 U
8521 3 3 9704 9705 U
8521 3 3 9704 9706 U

Table 57: Test timing plan table.
PLAN PHASE NEXTPHASES GREENMIN GREENMAX GREENEXT YELLOW REDCLEAR GROUPFIRST NOTES
1 1 2 35 0 0 4 0 1
1 2 3 5 0 0 3 0 0
1 3 4 8 0 0 3 0 0
1 4 5 32 0 0 4 0 0
1 5 6 9 0 0 3 0 0
1 6 1 1 0 0 3 0 0
2 1 2 12 30 4 3 0 1
2 2 1 10 40 4 3 0 0
3 1 2 12 30 4 3 1 1
3 2 3 4 8 2 3 0 0
3 3 1 10 20 4 3 1 0

Table 58: Test detector table.

ID NODE LINK OFFSET LANEBEGIN LANEEND LENGTH STYLE COORDINATR NOTES
5001 14142 2753 350 1 1 3 PASSAGE 1000
5002 14142 11486 250 1 3 3 PRESENCE 1000
5005 14142 2752 300 1 2 3 PASSAGE 1000

Table 59: Test signal coordinator table.

ID TYPE ALGORITHM NOTES
1000

Table 60: Test activity location table.

ID NODE LINK OFFSET LAYER EASTING NORTHING ELEVATION ACCESS HOME WORK NOTES
23 8524 9706 200 AUTO 2000 700 1000 0.00 1.0 0.0
24 8521 12407 300 BUS 2300 1500 1000 375. 0.0 1.0

Table 61: Test process link table.

ID FROMID FROMTYPE TOID TOTYPE DELAY COST NOTES
123 3003 TRANSIT 23 ACTIVITY 10 20
124 24 ACTIVITY 1003 PARKING 30 40

TRANSIMS-LANL-1.0 – Files – May 1999 Page 105
LA-UR – 99-2579

Table 62: Test study area link table.

ID BUFFER NOTES
9704 N
9705 N
9706 N
11486 N
11487 N
11495 N
12384 N
12407 N
28800 N
28804 N
2759 Y
2750 Y
2751 Y
2752 Y
2753 Y
2755 Y
2754 Y
2756 Y
2757 Y
2758 Y

TRANSIMS-LANL-1.0 – Files – May 1999 Page 106
LA-UR – 99-2579

8. SIMULATION OUTPUT

This TRANSIMS Simulation Output subsystem collects data from a running microsimulation and
stores it for subsequent examination by the analyst or use by other TRANSIMS software
components. It provides a software layer that insulates applications from the details of the file
structure and provides great flexibility in the specification of the data to be collected.

Two very different modes of data collection are supported. The original mode, used in IOC-1,
collects data in binary format on the local file system of each CPN used by the simulation. This
data is postprocessed to merge it into a single file for analysis. The newer mode developed for
IOC-2 uses a parallel communication library to collect data in ASCII format into a single file
written by the master simulation process. No postprocessing is required with this mechanism.

8.1 Terms

Event Data Event data reports when an interesting event occurs for a traveler. Events are
recorded as they occur, at irregular time intervals.

Evolution Data Evolution data, also known as snapshot data, provides detailed information
about how the state of the simulation evolves in time. Evolution data may be
recorded on every timestep or less frequently, as desired.

Summary Data Summary data reports aggregate data about the simulation. Summary data is
sampled, accumulated, and reported periodically throughout the simulation.

8.2 File Format

This section describes the file formats of each of the eight types of simulation outputs currently
implemented. All fields are described, but the filtering capability described in Section 8.3 allows
suppression of any output field for which the analyst has no interest, thus resulting in smaller
output files. Applications that read the output produced by the simulation should always use the
functions for reading that are described in Section 8.3. The functions provided by the output
representation automatically handle records with suppressed fields and only attempt to read the
fields that were actually written. This enables the implementation of general postprocessing
applications that need not be cognizant of the number and order of the fields written by the
simulation.

8.2.1 Traveler Event

Traveler event records are output by the microsimulation each time an event that is of interest to
the analyst occurs for a traveler. The simulation time interval during which to record events is
defined in the input configuration file. Filtering capabilities are provided so that the analyst may
choose which of the many potentially interesting events should be recorded. The events that may
be of interest are specified in the STATUS and ANOMALY output fields in Table 63. The other
fields describe the traveler’s state at the time the event occurred.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 107
LA-UR – 99-2579

Table 63: Traveler event record fields.

Field Description
TIME Current time (seconds from midnight).
TRAVELER Traveler ID.
TRIP Traveler’s trip ID.
LEG Traveler’s plan leg ID.
VEHICLE Vehicle ID; value = 0 if not in a vehicle.
VEHTYPE Vehicle type:

 0 = walk
 1 = auto
 2 = truck
 3 = bicycle
 4 = taxi
 5 = bus
 6 = trolley
 7 = streetcar
 8 = light rail
 9 = rapid rail
10 = regional rail

VSUBTYPE Vehicle subtype may be unused; value = 0 if not applicable.
ROUTE Transit route ID; value = -1 if not in a transit vehicle.
STOPS Count of number of stop signs encountered on current plan leg.
YIELDS Count of number of yield signs encountered on current plan leg.
SIGNALS Number of traffic signals encountered on current plan leg.
TURN Type of last turn made:

 0 = straight direction (no turn)
 1 = right turn
 -1 = left turn
 2 = hard right turn
 -2 = hard left turn
 values 3 to 6 represent increasingly more extreme right turns
 values –3 to –6 represent increasingly more extreme left turns
 -7 = reverse direction (U-turn)

STOPPED Time (seconds) spent stopped on current plan leg.
ACCELS Time (seconds) spent accelerating from 0 on current plan leg.
TIMESUM Total time (seconds) spent on current plan leg.
DISTANCESUM Total distance (meters) traveled on current plan leg (see accompanying text for more

information).
USER Analyst-defined field: any integer value is acceptable, and definition may vary with

each case study.
ANOMALY Type of anomaly:

 0 = no anomaly occurred
 1 = traveler is off plan
 2 = traveler cannot find next link in plan
 3 = traveler cannot find next parking place in plan
 4 = traveler cannot find next vehicle in plan
 5 = traveler cannot find next transit stop in plan
 6 = traveler cannot board full transit vehicle
 7 = driver of transit vehicle skipped stop that had passengers waiting to board
 8 = driver of vehicle cannot change lanes because of congestion

TRANSIMS-LANL-1.0 – Files – May 1999 Page 108
LA-UR – 99-2579

Field Description
STATUS Traveler’s current status bits: (see accompanying text for a detailed explanation of

status bit interpretation).

 0x1 = traveler is on a link (persistent)
 0x2 = change in traveler’s on-link status
 0x4 = traveler is on a leg (persistent)
 0x8 = change in traveler’s on-leg status

 0x10 = change in traveler’s on-trip status
 0x20 = traveler is non-motorized, i.e., walking, bicycling (persistent)
 0x40 = traveler is not in the study area (persistent)
 0x80 = change in traveler’s in-study area status

 0x100 = traveler is in a vehicle (persistent)
 0x200 = change in traveler’s vehicle occupancy status
 0x400 = traveler is the driver (persistent)
 0x800 = change in traveler’s driver status

 0x1000 = traveler is waiting at some location (persistent)
 0x2000 = change in traveler’s waiting status
 0x4000 = location is a parking place (persistent)
 0x8000 = location is a transit stop (persistent)

 0x10000 = driver of transit vehicle is at a transit stop (persistent)
 0x20000 = change in driver’s transit vehicle at stop status
 0x40000 = driver of transit vehicle is on a layover (persistent)
 0x80000 = change in driver’s transit vehicle on layover status

 0x100000 = driver’s transit vehicle is full (persistent)
 0x200000 = change in driver’s transit vehicle full status
 0x400000 = traveler is off plan (persistent)
 0x800000 = change in traveler’s off-plan status

 0x1000000 = beginning of simulation
 0x2000000 = end of simulation
 0x4000000 = location is an activity location (persistent)
 0x8000000 = undefined

 0x10000000 = undefined
 0x20000000 = undefined
 0x40000000 = undefined
 0x80000000 = undefined

TRANSIMS-LANL-1.0 – Files – May 1999 Page 109
LA-UR – 99-2579

Field Description
LOCATION Where traveler is located: link ID, parking place ID, transit stop ID, or activity

location ID, depending on the event as defined here

EVENT LOCATION value
 Enter/Exit/On link link ID
 Begin/End plan leg parking place ID or transit stop ID
 Begin/End trip parking place ID or transit stop ID
 Enter/Exit study area link ID
 Enter/Exit vehicle parking place ID or transit stop ID
 Begin/End driving parking place ID or transit stop ID
 Waiting for transit transit stop ID
 Waiting at parking parking place ID
 Begin/End activity activity location ID
 Transit vehicle at stop transit stop ID
 Transit vehicle on layover transit stop ID
 Transit vehicle full transit stop ID
 Off plan link ID
 Begin/End Simulation link ID
 Can’t find link link ID
 Can’t find parking parking place ID
 Can’t find vehicle parking place ID
 Can’t find transit stop transit stop ID
 Can’t board transit transit stop ID
 Skipped transit stop transit stop ID
 Can’t change lanes link ID

The STATUS field is bit-oriented. Each bit represents a characteristic about the traveler that is
true whenever the bit is set. Multiple bits set means that multiple characteristics are true at this
time. Interpretation of the STATUS field involves determining which combination of
characteristics is currently true according to the table that describes the individual bits. It is
convenient to view the STATUS field in hexadecimal notation as this more clearly illuminates the
patterns in the field.

Status values are generally represented in bit pairs. The lower bit of a pair is termed the persistent
bit, and the upper bit is termed the change bit. The persistent bit is set during the entire time that
the condition is true. The change bit is set only for the timestep when a change in the persistent bit
occurs. This scheme allows the analyst to identify the beginning and end of a persistent condition
without comparing multiple events.

For example, when a traveler begins a leg, the persistent bit representing on leg (0x4) is set, and
the change bit representing change in on leg (0x8) is set. While the traveler is on the leg, the
persistent bit (0x4) remains set, and the change bit (0x8) is cleared. When the traveler ends the
leg, the persistent bit (0x4) is cleared, and the change bit (0x8) is again set for one timestep. While
the traveler is not on a leg (e.g., while waiting somewhere) both the persistent bit (0x4) and the
change bit (0x8) are cleared.

A few of the status bits occur singly rather than in pairs because both bits are not required. For
example, a persistent bit for on trip is not needed because travelers are only simulated while they
are on a trip. A persistent bit that is always set provides no additional information and clutters the

TRANSIMS-LANL-1.0 – Files – May 1999 Page 110
LA-UR – 99-2579

output, and therefore is not used. The non-motorized bit (0x20) is used in conjunction with the on
leg bits to indicate that the leg does not involve vehicular travel.

The location type identification bits (0x4000, 0x8000, and 0x4000000) are used in two ways:
They are used in conjunction with bits 0x1000 and 0x2000 to identify the type of the location at
which the traveler is waiting. They are also used to specify the type of location when the
LOCATION field represents a parking place or transit stop ID. For example, when a traveler
begins a leg at a parking place, bit 0x4000 will be set in addition to bits 0x4 and 0x8 to signify that
the beginning location of the leg is a parking place.

The DISTANCESUM field accumulates the distance traveled along links and within intersections.
Upon entering the intersection, DISTANCESUM is incremented by the setback on the link just left,
and when exiting the intersection, DISTANCESUM is incremented by the setback on new link.

8.2.2 Vehicle Snapshot

Vehicle snapshot data provides information about vehicles traveling on a link. When collected for
every link on every timestep, this gives a complete trajectory for each vehicle in the simulation.
Vehicle snapshot data is collected as frequently as the analyst indicates in the input configuration
file for the specified links.

Table 64: Vehicle snapshot record fields.

 Field Interpretation
 VEHICLE Vehicle ID.
 TIME Current time (seconds from midnight).
 LINK Link ID on which the vehicle was traveling.
 NODE Node ID vehicle was traveling away from.
 LANE Number of the lane on which the vehicle is traveling.
 DISTANCE Distance (in meters) the vehicle is away from the setback of the node from which it is traveling

away .
 VELOCITY Velocity (in meters per second) of the vehicle.
 VEHTYPE Vehicle type:

 0 = walk
 1 = auto
 2 = truck
 3 = bicycle
 4 = taxi
 5 = bus
 6 = trolley
 7 = streetcar
 8 = light rail
 9 = rapid rail
 10 = regional rail

 ACCELER Acceleration (in meters per second) the vehicle had in the current timestep.
 DRIVER Driver ID.
 PASSENGERS Count of passengers in vehicle.
 EASTING Vehicle’s x-coordinate (in meters).
 NORTHING Vehicle’s y-coordinate (in meters).
 ELEVATION Vehicle’s z-coordinate (in meters).
 AZIMUTH Vehicle’s orientation angle (degrees from east in the counterclockwise direction).
 USER User-defined field that can be set on a per-vehicle basis.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 111
LA-UR – 99-2579

8.2.3 Intersection Snapshot

Intersection snapshot data provides information about a vehicle as it is traversing an intersection.
This data is collected as frequently as the analyst indicates in the input configuration file for the
specified nodes.

Table 65: Intersection snapshot record fields.

Field Interpretation
VEHICLE Vehicle ID.
TIME Current time (seconds from the midnight).
NODE Node ID where the vehicle is located.
LINK Link ID from which the vehicle entered.
LANE Number of the lane from which the vehicle entered.
QINDEX Vehicle position in the intersection buffer.

8.2.4 Traffic Control Snapshot

Traffic control snapshot data reports the current state of the traffic signal at a node. This data is
collected as frequently as the analyst indicates in the input configuration file for the specified
nodes.

Table 66: Traffic control snapshot record fields.

Field Interpretation
NODE Node ID where the signal is located.
TIME Current time (seconds from midnight).
LINK Link ID entering the signal.
LANE Number of the lane entering the signal.
SIGNAL Type of control present:

 0: None
 1: Stop
 2: Yield
 3: Wait
 4: Caution
 5: Permitted
 6: Protected

TRANSIMS-LANL-1.0 – Files – May 1999 Page 112
LA-UR – 99-2579

8.2.5 Link Travel Times Summary

Link travel time summary data reports counts of vehicles and travel times on links accumulated as
vehicles exit the links. This data is collected as frequently as the analyst indicates in the input
configuration file for the specified links. For IOC-2, there are separate data records for each
turning movement leaving each lane on the link.

Table 67: Link travel times summary field records.

Field Interpretation
LINK Link ID being reported.
NODE Node ID from which the vehicles were traveling away.
TIME Current time (seconds from midnight).
COUNT Number of vehicles leaving the link.
SUM Sum of the vehicle travel times (in seconds) for vehicles leaving the link. (The time

spent in the previous intersection is included in this value.)
SUMSQUARES Sum of the vehicle travel time squares (in seconds squared) for vehicles leaving the

link. (The time spent in the previous intersection is included in this value.)
TURN Type of turn the vehicle made leaving the link.
LANE Lane number.
VCOUNT Number of vehicles on the link.
VSUM Sum of vehicle velocities (in meters per second) on the link.
VSUMSQUARES Sum of the squares of the vehicle velocities (in meters squared per second squared).

8.2.6 Link Densities Summary

Link density summary data reports counts and velocities of vehicles within boxes that partition the
link. This data is collected as frequently as the analyst indicates in the input configuration file for
the specified links. For IOC-2, there are separate data records for each lane on the link. The box
length is specified in the input configuration file.

Table 68: Link densities summary record fields.

Field Interpretation
LINK Link ID being reported.
NODE Node ID from which the vehicles were traveling away.
DISTANCE Ending distance of the box (in meters) from the setback of the node from which the

vehicles were traveling away.
TIME Current time (seconds from midnight).
COUNT Number of vehicles in the box.
SUM Sum of the vehicle velocities (in meters per second) in the box.
SUMSQUARES Sum of the squares of the vehicle velocities (in meters squared per second squared).
LANE Lane number.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 113
LA-UR – 99-2579

8.2.7 Link Velocities Summary

Link velocity summary data reports histograms of velocities of vehicles within boxes that partition
the link. This data is collected as frequently as the analyst indicates in the input configuration file
for the specified links. The box length, number of histogram bins, and maximum velocity are
specified in the input configuration file. For the microsimulation used in IOC-2, the maximum
velocity is typically 37.5 m/s, and the velocity range is divided into five bins plus an overflow bin
extending to infinity. Histogram intervals are defined to be closed at the lower end of the bin and
open at the upper end.

Table 69: Link velocities summary record fields.

Field Interpretation
LINK Link ID being reported.
NODE Node ID from which the vehicles were traveling away.
DISTANCE Ending distance of the box (in meters) from the setback of the node from which the

vehicles were traveling away.
TIME Current time (seconds from midnight).
COUNT0 Number of vehicles with velocities in the range [0, 7.5).
COUNT1 Number of vehicles with velocities in the range [7.5, 15).
COUNT2 Number of vehicles with velocities in the range [15, 22.5).
COUNT3 Number of vehicles with velocities in the range [22.5, 30).
COUNT4 Number of vehicles with velocities in the range [30, 37.5).
COUNT5 Number of vehicles with velocities in the range [37.5, infinity).

TRANSIMS-LANL-1.0 – Files – May 1999 Page 114
LA-UR – 99-2579

8.2.8 Link Energy Summary

Link energy summary data reports histograms of energies (integrated power) of vehicles
accumulated as vehicles enter the links. Energy is defined as the sum of the vehicle’s power over
each timestep, where power is defined as the velocity times the acceleration when the acceleration
is greater than zero. Vehicles are assumed to have zero power while they are in intersections. The
units for energy in IOC-2 are cells-squared per second-squared. (See the documentation for the
microsimulation for the definition of a cell.)

* Link energy summary data is not used by the Emissions Estimator in this release.

This data is collected as frequently as the analyst indicates in the input configuration file for the
specified links. The number of histogram bins and maximum energy is specified in the input
configuration file. Histogram intervals are defined to be closed at the lower end of the bin and
open at the upper end.

Table 70: Link energy summary record fields.

Field Interpretation
LINK Link ID being reported.
NODE Node ID from which the vehicles were traveling away.
TIME Current time (seconds from midnight).
ENERGY0 Number of vehicles with integrated power in the range [0, energy_maximum /

number_bins).
ENERGY1 Number of vehicles with integrated power in the second bin.
ENERGY2 Number of vehicles with integrated power in the third bin.
ENERGYn Number of vehicles with integrated power in the range [energy_maximum, infinity).

8.3 Output Filtering

A variety of output filtering capabilities are provided in order to limit potentially voluminous
output to only those items of interest in a particular simulation run. An unlimited number of
output specifications may be included in the simulation configuration file, allowing for very fine-
grained control of the output that is produced in the input configuration file.

Time-based filtering may be used to restrict data collection to a subset of the total run time by
specifying a starting and ending time. The frequency of reporting for evolution and summary data
and the sampling frequency for summary data are specified by the analyst in the input
configuration file.

Data collected may be restricted to a subset of nodes and links in the road network. Table 71
describes the fields in the node specification file, and Table 72 describes the fields in the link
specification files. Regional filtering allows the specification of the corners of a rectangular region
in which data should be collected. (Note that the microsimulator does not currently utilize regional
filtering.)

Table 71: Node specification fields.

Field Description
NAME Output file name.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 115
LA-UR – 99-2579

Field Description
NODE Node ID.

Table 72: Link specification fields.

Field Description
NAME Output file name.
LINK Link ID.

Data may be filtered by value, with only those items that pass all filters appearing in the output.
The supported operators for value filtering are indicated in Table 73. Data fields in a record may
be suppressed, resulting in shorter records.

Table 73: Value filtering operators.

Operators Interpretation
== equal to
!= not equal to
< less than

<= less than or equal to
> greater than

>= greater than or equal to
% an integer multiple of
!% not an integer multiple of
included in the list (a list is a string of values starting with the character [, ending with the

character], and where each value is separated by the character |)
!# not included in the list
& has set bits
!& has cleared bits

8.4 Interface Functions

8.4.1 OutReadHeader
Signature: int OutReadHeader(FILE * file, TOutHeader * header)

Description: Read a header from an output table.

Argument: file – pointer to a FILE stream object.
header – pointer to an output table header structure defined in Section 8.5.1.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.2 OutWriteHeader
Signature: int OutWriteHeader (FILE * file, const TOutHeader *

header)

Description: Write a header to an output table.

Argument: file – pointer to a FILE stream object.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 116
LA-UR – 99-2579

header – pointer to an output table header structure defined in Section 8.5.1.

Return Value: Return nonzero if the header was successfully written, or zero if not.

8.4.3 OutSkipHeader
Signature: int OutSkipHeader (FILE * file)

Description: Skip a header from an output table.

Argument: file – pointer to a FILE stream object.

Return Value: Return nonzero if the header was successfully skipped, or zero is not.

8.4.4 OutReadNodeSpecification
Signature: int OutReadNodeSpecification (FILE * file,

TOutNodeSpecificationRecord * record)

Description: Read a record from a node specification table.

Argument: file – pointer to a FILE stream object.
record – pointer to an output node specification record structure defined in

Section 8.5.2.

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.5 OutWriteNodeSpecification
Signature: int OutWriteNodeSpecification (FILE * file, const

TOutNodeSpecificationRecord * record)

Description: Write a record to a node specification table.

Argument: file – pointer to a FILE stream object.
record – pointer to an output node specification record structure defined in

Section 8.5.2.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.6 OutReadLinkSpecification
Signature: int OutReadLinkSpecification (FILE * file,

TOutLinkSpecificationRecord * record)

Description: Read a record from a link specification table.

Argument: file – pointer to a FILE stream object.
record – pointer to an output link specification structure defined in

Section 8.5.3.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 117
LA-UR – 99-2579

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.7 OutWriteLinkSpecification
Signature: int OutWriteLinkSpecification (FILE * const

TOutLinkSpecificationRecord * record)

Description: Write a record to a link specification table.

Argument: file – pointer to a FILE stream object.
record – pointer to an output link specification structure defined in

Section 8.5.3.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.8 OutReadTravelerEventHeader
Signature: int OutReadTravelerEventHeader (FILE * file, TOutHeader *

header, TOutTravelerEventRecord * record)

Description: Read a header from a traveler event table.

Argument: file – pointer to a FILE stream object.
header – pointer to an output table header structure defined in Section 8.5.1.
record – pointer to a traveler event structure defined in Section 8.5.4.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.9 OutWriteTravelerEventHeader
Signature: int OutWriteTravelEventHeader (FILE * file, const

TOutHeader * header, TOutTravelerEventRecord * record)

Description: Write a header to a traveler event table.

Argument: file – pointer to a FILE stream object.
header – pointer to an output table header structure defined in Section 8.5.1.
record – pointer to a traveler event structure defined in Section 8.5.4.

Return Value: Return nonzero if the header was successfully written, or zero if not.

8.4.10 OutReadTravelerEvent
Signature: int OutReadTravelerEvent (FILE * file,

TOutTravelerEventRecord * record)

Description: Read a record from a traveler event table.

Argument: file – pointer to a FILE stream object.
record – pointer to a traveler event structure defined in Section 8.5.4.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 118
LA-UR – 99-2579

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.11 OutWriteTravelerEvent
Signature: int OutWriteTravelerEvent (FILE * file, const

TOutTravelerEventRecord * record)

Description: Write a record to a traveler event table.

Argument: file – pointer to a FILE stream object.
record – pointer to a traveler event structure defined in Section 8.5.4.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.12 OutReadVehicleEvolutionHeader
Signature: int OutReadVehicleEvolutionHeader (FILE * file,

TOutHeader * header, TOutVehicleEvolutionRecord * record)

Description: Read a header from a vehicle evolution table.

Argument: file – pointer to a FILE stream object.
header – pointer to an output table header structure defined in Section 8.5.1.
record – pointer to a vehicle evolution structure defined in Section 8.5.5.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.13 OutWriteVehicleEvolutionHeader
Signature: int OutWriteVehicleEvolutionHeader (FILE * file, const

TOutHeader * header, TOutVehicleEvolutionRecord * record)

Description: Write a header to a vehicle evolution table.

Argument: file – pointer to a FILE stream object.
header – pointer to an output table header structure defined in Section 8.5.1.
record – pointer to a vehicle evolution structure defined in Section 8.5.5.

Return Value: Return nonzero if the header was successfully written, or zero if not.

8.4.14 OutReadVehicleEvolution
Signature: int OutReadVehicleEvolution (FILE * file,

TOutVehicleEvolutionRecord * record)

Description: Read a record from a vehicle evolution table.

Argument: file – pointer to a FILE stream object.
record – pointer to a vehicle evolution structure defined in Section 8.5.5.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 119
LA-UR – 99-2579

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.15 OutWriteVehicleEvolution
Signature: int OutWriteVehicleEvolution (FILE * file, const

TOutVehicleEvolutionRecord * record)

Description: Write a record to a vehicle evolution table.

Argument: file – pointer to a FILE stream object.
record – pointer to a vehicle evolution structure defined in Section 8.5.5.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.16 OutReadIntersectionEvolutionHeader
Signature: int OutReadIntersectionEvolutionHeader (FILE * file,

TOutHeader * header, TOutIntersectionEvolutionRecord *
record)

Description: Read a header from an intersection evolution table.

Argument: file – pointer to a FILE stream object.
header – pointer to an output table header structure defined in Section 8.5.1.
record – pointer to an intersection evolution structure defined in

Section 8.5.6.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.17 OutWriteIntersectionEvolutionHeader
Signature: int OutWriteIntersectionEvolutionHeader (FILE * file,

const TOutHeader * header,
TOutIntersectionEvolutionRecord * record)

Description: Write a header to an intersection evolution table.

Argument: file – pointer to a FILE stream object.
header – pointer to an output table header structure defined in

Section 8.5.1.
record – pointer to an intersection evolution structure defined in

Section 8.5.6.

Return Value: Return nonzero if the header was successfully written, or zero if not.

8.4.18 OutReadIntersectionEvolution
Signature: int OutReadIntersectionEvolution (FILE * file,

TOutIntersectionEvolutionRecord * record)

Description: Read a record from an intersection evolution table.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 120
LA-UR – 99-2579

Argument: file – pointer to a FILE stream object.
record – pointer to an intersection evolution structure defined in Section 8.5.6.

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.19 OutWriteIntersectionEvolution
Signature: int OutWriteIntersectionEvolution (FILE * file, const

TOutIntersectionEvolutionRecord * record)

Description: Write a record to an intersection evolution table.

Argument: file – pointer to a FILE stream object.
record – pointer to an intersection evolution structure defined in

Section 8.5.6.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.20 OutReadTrafficControlEvolutionHeader
Signature: int OutReadTrafficControlEvolutionHeader (FILE * file,

TOutHeader * header, TOutTrafficControlEvolu tionRecord *
record)

Description: Read a header from a traffic control evolution table.

Argument: file – pointer to a FILE stream object.
header – pointer to an output table header structure defined in Section 8.5.1.
record – pointer to a traffic control evolution structure defined in

Section 8.5.7.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.21 OutWriteTrafficControlEvolutionHeader
Signature: int OutWriteTrafficControlEvolutionHeader (FILE * file,

const TOutHeader * header,
TOutTrafficControlEvolutionRecord * record)

Description: Write a header to a traffic control evolution table.

Argument: file – pointer to a FILE stream object.
header – pointer to an output table header structure defined in Section 8.5.1.
record – pointer to a traffic control evolution structure defined in

Section 8.5.7.

Return Value: Return nonzero if the header was successfully written, or zero if not.

8.4.22 OutReadTrafficControlEvolution
Signature: int OutReadTrafficControlEvolution (FILE * file,

TOutTrafficControlEvolutionRecord * record)

TRANSIMS-LANL-1.0 – Files – May 1999 Page 121
LA-UR – 99-2579

Description: Read a record from a traffic control evolution table.

Argument: file – pointer to a FILE stream object.
record – pointer to a traffic control evolution structure defined in

Section 8.5.7.

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.23 OutWriteTrafficControlEvolution
Signature: int OutWriteTrafficControlEvolution (FILE * file, const

TOutTrafficControlEvolutionRecord * record)

Description: Write a record to a traffic control evolution table.

Argument: file – pointer to a FILE stream object.
record – pointer to a traffic control evolution structure defined in

Section 8.5.7.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.24 OutReadLinkTimeSummaryHeader
Signature: int OutReadLinkTimeSummaryHeader (FILE * file, TOutHeader

* header, TOutLinkTimeSummaryRecord * record)

Description: Read a header from a link time summary table.

Argument: file – pointer to a FILE stream object.
header – pointer to an output table header structure defined in Section 8.5.1.
record – pointer to a link time summary structure defined in Section 8.5.8.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.25 OutWriteLinkTimeSummaryHeader
Signature: int OutWriteLinkTimeSuummaryHeader (FILE * file, const

TOutHeader * header, TOutLinkTimeSummaryRecord * record)

Description: Write a header to a link time summary table.

Argument: file – pointer to a FILE stream object.
record – pointer to an output table header structure defined in Section 8.5.1.
TOutLinkTimeSummaryRecord * – pointer to a link time summary

structure defined in Section 8.5.8.

Return Value: Return nonzero if the header was successfully written, or zero if not.

8.4.26 OutReadLinkTimeSummary
Signature: int OutReadLinkTimeSummary (FILE * file,

TRANSIMS-LANL-1.0 – Files – May 1999 Page 122
LA-UR – 99-2579

TOutLinkTimeSummaryRecord * record)

Description: Read a record from a link time summary table.

Argument: file – pointer to a FILE stream object.
record – pointer to a link time summary structure defined in Section 8.5.8.

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.27 OutWriteLinkTimeSummary
Signature: int OutWriteLinkTimeSummary (FILE * file, const

TOutLinkTimeSummaryRecord * record)

Description: Write a record to a link time summary table.

Argument: file – pointer to a FILE stream object.
record – pointer to a link time summary structure defined in Section 8.5.8.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.28 OutReadLinkSpaceSummaryHeader
Signature: int OutReadLinkSpaceSummaryHeader (FILE * file,

TOutHeader * header, TOutLinkSpaceSummaryRecord *
record)

Description: Read a header from a link space summary table.

Argument: file – pointer to a FILE stream object.
header – pointer to an output table header structure defined in Section 8.5.1.
record – pointer to a link space summary structure defined in Section 8.5.9.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.29 OutWriteLinkSpaceSummaryHeader
Signature: int OutWriteLinkSpaceSummaryHeader (FILE * file, const

TOutHeader * header, TOutLinkSpaceSummaryRecord * record)

Description: Write a header to a link space summary table.

Argument: file – pointer to a FILE stream object.
header – pointer to an output table header structure defined in Section 8.5.1.
record – pointer to a link space summary structure defined in Section 8.5.9.

Return Value: Return nonzero if the header was successfully written, or zero if not.

8.4.30 OutReadLinkSpaceSummary
Signature: int OutReadLinkSpaceSummary (FILE * file,

TOutLinkSpaceSummaryRecord * record)

TRANSIMS-LANL-1.0 – Files – May 1999 Page 123
LA-UR – 99-2579

Description: Read a record from a link space summary table.

Argument: file – pointer to a FILE stream object.
record – pointer to a link space summary structure defined in Section 8.5.9.

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.31 OutWriteLinkSpaceSummary
Signature: int OutWriteLinkSpaceSummary (FILE * file, const

TOutLinkSpaceSummaryRecord * record)

Description: Write a record to a link space summary table.

Argument: file – pointer to a FILE stream object.
record – pointer to a link space summary structure defined in Section 8.5.9.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.32 OutReadLinkVelocitySummaryHeader
Signature: int OutReadLinkVelocitySummaryHeader (FILE * file,

TOutHeader * header, TOutLinkVelocitySummaryRecord *
record)

Description: Read a header from a link velocity summary table.

Argument: file – pointer to a FILE stream object.
header – pointer to an output table structure defined in Section 8.5.1.
TOutLinkVelocitySummaryRecord – pointer to a link velocity summary

structure defined in Section 8.5.10.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.33 OutWriteLinkVelocitySummaryHeader
Signature: int OutWriteLinkVelocitySummaryHeader (FILE * file, const

TOutHeader * head, TOutLinkVelocitySummaryRecord *
record)

Description: Write a header to a link velocity summary table.

Argument: file – pointer to a FILE stream object.
header – pointer to an output table header structure defined in

Section 8.5.1.
record – pointer to a link velocity summary structure defined in

Section 8.5.10.

Return Value: Return nonzero if the header was successfully written, or zero if not.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 124
LA-UR – 99-2579

8.4.34 OutReadLinkVelocitySummary
Signature: int OutReadLinkVelocitySummary (FILE * file,

TOutLinkVelocitySummaryRecord * record)

Description: Read a record to a link velocity summary table.

Argument: file – pointer to a FILE stream object.
record – pointer to a link velocity summary structure defined in

Section 8.5.10.

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.35 OutWriteLinkVelocitySummary
Signature: int OutWriteLinkVelocitySummary (FILE * file, const

TOutLinkVelocitySummaryRecord * record)

Description: Write a record to a link velocity summary table.

Argument: file – pointer to a FILE stream object.
record – pointer to a link velocity summary structure defined in

Section 8.5.10.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.36 OutReadLinkEnergySummaryHeader
Signature: int OutReadLinkEnergySummaryHeader (FILE * file,

TOutHeader * header, TOutLinkEnergySummaryRecord *
record)

Description: Read a header to a link energy summary table.

Argument: file – pointer to a FILE stream object.
header – pointer to an output table header structure defined in Section 8.5.1.
record – pointer to a link energy summary structure defined in

Section 8.5.11.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.37 OutWriteLinkEnergySummaryHeader
Signature: int OutWriteLinkEnergySummaryHeader (FILE * file, const

TOutHeader *header, TOutLinkEnergySummaryRecord * record)

Description: Write a header to a link energy summary table.

Argument: file – pointer to a FILE stream object.
header – pointer to an output table header structure defined in

TRANSIMS-LANL-1.0 – Files – May 1999 Page 125
LA-UR – 99-2579

Section 8.5.1.
record – pointer to a link energy summary structure defined in Section 8.5.11.

Return Value: Return nonzero if the header was successfully written, or zero if not.

8.4.38 OutReadLinkEnergySummary
Signature: int OutReadLinkEnergySummary (FILE * file,

TOutLinkEnergySummaryRecord * record)

Description: Read a record to a link energy summary table.

Argument: file – pointer to a FILE stream object.
record – pointer to a link energy summary structure defined in

Section 8.5.11.

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.39 OutWriteLinkEnergySummary
Signature: int OutWriteLinkEnergySummary (FILE * file, const

TOutLinkEnergySummaryRecord * record)

Description: Write a record to a link energy summary table.

Argument: file – pointer to a FILE stream object.
record – pointer to a link energy summary structure defined in

Section 8.5.11.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.5 Data Structures

8.5.1 TOutHeader

This structure is used for the output table header.

typedef struct
{
/** The field names. **/
INT8 fFields[512];

} TOutHeader;

8.5.2 TOutNodeSpecificationRecord

This structure is used for output node specification table records.

typedef struct
{
/** The NAME field. **/

TRANSIMS-LANL-1.0 – Files – May 1999 Page 126
LA-UR – 99-2579

INT8 fName[100];

/** The NODE field. **/
INT32 fNode;

} TOutNodeSpecificationRecord;

8.5.3 TOutLinkSpecificationRecord

This structure is used for output link specification table records.

typedef struct
{
/** The NAME field. **/
INT8 fName[100];

/** The LINK field. **/
INT32 fLink;

} TOutLinkSpecificationRecord;

8.5.4 TOutTravelerEventRecord

This structure is used for traveler event records.

typedef structure
{
/** The TIME field. **/
REAL64 fTime;

/** The TRAVELER field. **/
INT32 fTraveler;

/** The TRIP field. **/
INT32 fTrip;

/** The LEG field. **/
INT32 fLeg;

/** The VEHICLE field. **/
INT32 fVehicle;

/** The VEHTYPE field. **/
INT32 fVehtype;

/** The VSUBTYPE field. **/
INT32 fVsubtype;

/** The ROUTE field. **/
INT32 fRoute;

/** The STOPS field. **/
INT32 fStops;

/** The YIELDS field. **/
INT32 fYields;

/** The SIGNALS field. **/

TRANSIMS-LANL-1.0 – Files – May 1999 Page 127
LA-UR – 99-2579

INT32 fSignals;

/** The TURN field. **/
INT32 fTurn;

/** The STOPPED field. **/
REAL64 fStopped;

/** the ACCELS field. **/
REAL64 fAccels;

/** The TIMESUM field. **/
REAL64 fTimesum;

/** The DISTANCESUM field. **/
REAL64 fDistancesum;

/** The USER field. **/
INT32 fUser;

/** The Anomaly field. **/
INT32 fAnomaly;

/** The STATUS field. **/
INT32 fStatus;

/** The LOCATION field. **/
INT32 fLocation;

/** Private: The i/o formats. **/
INT8 fFormat[2] [85];

/** Private: The pointers to the data. **/
INT32 fOffsets[20];

} TOutTravelerEventRecord;

8.5.5 TOutVehicleEvolutionRecord

This structure is used for vehicle evolution records.

typedef struct
{
/** The TIME field. **/
REAL64 fTime;

/** The DRIVER field. **/
INT32 fDriver;

/** The VEHICLE field. **/
INT32 fVehicle;

/** The VEHTYPE field. **/
INT32 fVehtype;

/** The LINK field. **/
INT32 fLink;

/** The NODE field. **/

TRANSIMS-LANL-1.0 – Files – May 1999 Page 128
LA-UR – 99-2579

INT32 fNode.;

/** The LANE field. **/
INT32 fLane;

/** The DISTANCE field. **/
REAL64 fDistance;

/** The VELOCITY field. **/
REAL64 fVelocity;

/** The ACCELER field. **/
REAL64 fAcceler;

/** The PASSENGERS field. **/
INT32 fPassengers;

/** The EASTING field. **/
REAL64 fEasting;

/** The NORTHING field. **/
REAL64 fNorthing;

/** The ELEVATION field. **/
REAL64 fElevation;

/** The AZIMUTH field. **/
REAL64 fAzimuth;

/** The USER field. **/
INT32 fUser;

/** Private: The i/o formats. **/
INT8 fFormat[2] [72];

/** Private: The pointers to the data. **/
INT32 fOffsets[16];

} TOutVehicleEvolutionRecord;

8.5.6 TOutIntersectionEvolutionRecord

This structure is used for intersection evolution records.

typedef struct
{
/** The TIME field. **/
REAL64 fTime;

/** The VEHICLE field. **/
INT32 fVehicle;

/** The NODE field. **/
INT32 fNode;

/** The LINK field. **/
INT32 fLink;

/** The LANE field. **/

TRANSIMS-LANL-1.0 – Files – May 1999 Page 129
LA-UR – 99-2579

INT32 fLane;

/** The QINDEX field. **/
INT32 fQindex;

/** Private: The i/o formats. **/
INT8 fFormat[2] [25];

/** Private: The pointer to the data. **/
INT32 fOffsets [6];

} TOutIntersectionEvolutionRecord;

8.5.7 TOutTrafficControlEvolutionRecord;

This structure is used for traffic control evolution records.

typedef struct
{
/** The TIME field. **/
REAL64 fTime;

/** The NODE field. **/
INT32 fNode;

/** The LINK field. **/
INT32 fLink;

/** The LANE field. **/
INT32 fLane;

/** The SIGNAL field. **/
INT32 fSignal;

/** Private: The i/o formats. **/
INT8 fFormat [2] [21];

/** Private: The pointers to the data. **/
INT32 fOffsets[5];

} TOutTrafficControlEvolutionRecord;

8.5.8 TOutLinkTimeSummaryRecord

This structure is used for link time summary records.

typedef struct
{
/** The TIME field. **/
REAL64 fTime;

/** The LINK field. **/
INT32 fLink;

/** The NODE field. **/
INT32 fNode;

/** The LANE field. **/

TRANSIMS-LANL-1.0 – Files – May 1999 Page 130
LA-UR – 99-2579

INT32 fLane;

/** The TURN field. **/
INT32 fTurn;

/** The COUNT field. **/
INT32 fCount;

/** The SUM field. **/
REAL64 fSum;

/** The SUMSQUARES field. **/
REAL64 fSumsquares;

/** The VCOUNT field. **/
INT32 fVCount;

/** The VSUM field. **/
REAL64 fVSum;

/** The VSUMSQUARES field. **/
REAL64 fVSumsquares;

/** Private: The i/o formats. **/
INT8 fFormat[2] [49];

/** Private: The pointers to the data. **/
INT32 fOffsets[11];

} TOutLinkTimeSummaryRecord;

8.5.9 TOutLinkSpaceSummaryRecord

This structure is used for link space summary records.

typedef struct
{
/** The TIME field. **/
REAL64 fTime;

/** The LINK field. **/
INT32 fLink;

/** The NODE field. **/
INT32 fNode;

/** The LANE field. **/
INT32 fLane;

/** The DISTANCE field. **/
REAL64 fDistance;

/** The COUNT field. **/
INT32 fCount;

/** The SUM field. **/
REAL64 fSum;

/** The SUMSQUARES field. **/

TRANSIMS-LANL-1.0 – Files – May 1999 Page 131
LA-UR – 99-2579

REAL64 fSumsquares;

/** Private: The i/o formats. **/
INT8 fFormat[2] [36];

/** Private: The pointers to the data. **/
INT32 fOffsets[8];

} TOutLinkSpaceSummaryRecord;

8.5.10 TOutLinkVelocitySummaryRecord

This structure is used for link velocity summary records.

/** Maximum allowed number of bins in a histogram. **/
#define HISTOGRAM_MAX_BINS 100

/** Structure for link velocity summary records. **/
typedef struct
{

/** The TIME field. **/
REAL64 fTime;

/** The LINK field. **/
INT32 fLink;

/** The NODE field. **/
INT32 fNode.

/** The DISTANCE field. **/
READ64 fDistance;

/** The COUNT fields. **/
INT32 fCount [HISTOGRAM_MAX_BINS];

/** The number of bins in the histogram. **/
INT32 fNumberBins;

/** Private: The i/o formats. **/
INT8 fFormat[2] [18 + 4 * HISTOGRAM_MAX_BINS];

/** Private: The pointers to the data. **/
INT32 fOffsets[4 + HISTOGRAM_MAX_BINS];

} TOutLinkVelocitySummaryRecord;

8.5.11 TOutLinkEnergySummaryRecord
This structure is used for link energy summary records.

/** Maximum allowed number of bins in a histogram. **/
#define HISTOGRAM_MAX_BINS_100

/** Structure for link energy summary records. **/
typedef struct
{
/** The TIME field. **/

TRANSIMS-LANL-1.0 – Files – May 1999 Page 132
LA-UR – 99-2579

REAL64 fTime;

/** The LINK field. **/
INT32 fLink;

/** The NODE field. **/
INT32 fNode;

/** The ENERGY fields. **/
INT32 fEnergy[HISTOGRAM_MAX_BINS];

/** The number of bins in the histogram. **/
INT32 fNumberBins;

/** Private: The i/o formats. **/
INT8 fFormat[2] [13 + 3 * HISTOGRAM_MAX_BINS];

/** Private: The pointers to the data. **/
INT32 fOffsets[3 + HISTOGRAM_MAX_BINS];

} TOutLinkEnergySummaryRecord;

8.6 Utility Programs

8.6.1 InterpretStatus

InterpretStatus displays the STATUS field in the traveler event output data as a bit pattern for
easier interpretation.

Usage: InterpretStatus <event file>

InterpretStatus reads the event file and writes the bit patterns representing the STATUS field to
standard output. The output may be redirected to a file if preferred.

8.6.2 TestSimOutput

TestSimOutput tests much of the functionality of the simulation output representation. Its primary
use is for regression testing when the output representation is modified.

Usage: TestSimOutput <configuration file>

TestSimOutput writes output to standard out. The final line should be “No failures occurred.”

* TestSimOutput is not available in this release.

8.6.3 CompareDensity

CompareDensity allows vehicle evolution data and link density summary data to be compared for
verification of consistency. Comparison of new output with previously recorded output allows a
limited form of regression testing of simulation output when the simulation is modified.

Usage: CompareDensity <configuration file>

TRANSIMS-LANL-1.0 – Files – May 1999 Page 133
LA-UR – 99-2579

CompareDensity writes records that are not within the tolerated difference to standard output.

* CompareDensity is not available in this release.

8.6.4 CompareVelocity

CompareVelocity allows vehicle evolution data and link velocity summary data to be compared for
verification of consistency. Comparison of new output with previously recorded output allows a
limited form of regression testing of simulation output when the simulation is modified.

Usage: CompareVelocity <configuration file>

CompareVelocity writes records that are not within the tolerated difference to standard output.

* CompareVelocity is not available in this release.

8.6.5 DumpOutput

DumpOutput may be used to merge and filter binary output collected on individual computational
nodes and convert it to ASCII format. Binary data collection is still available in the output
representation, but has been largely superceded by the ASCII data collection capability provided
by the parallel toolbox. DumpOutput is still available, but is now seldom used.

* DumpOutput is not available in this release.

8.6.6 SetupOutput

The SetupOutput script copies a set of empty and test output tables into a specified directory. It
takes the name of the directory as its only argument.

8.6.7 CleanupOutput

The CleanupOutput script removes a set of tables created by SetupOutput. It takes the name of
the directory as its argument.

8.7 Files

Table 74: Simulation output library files.

Type File Name Description
Binary Files libTIO.a TRANSIMS Interfaces library
Source Files outio.c Defines simulation output data structures and interface functions

outio.h Simulation output interface functions source file
Utilities InterpretStatus Interprets event status field

SetupOutput Creates empty and test output files
CleanupOutput Removes empty and test output files

Example Files Test*.tbl Tests output tables
TestConfiguration.tbl Configuration file for TestSimOutput

TRANSIMS-LANL-1.0 – Files – May 1999 Page 134
LA-UR – 99-2579

8.8 Configuration Keys

In the simulation output keywords, the trailing n must be replaced by an integer, beginning with 1
for the first set of output of each type (snapshot, event, and summary). If more than one set of
output is desired for a particular type, the second set of keywords ends with n=2; the third set uses
n=3, etc. There is no restriction to the number of output data sets of each type that may be
requested.

The keywords in Table 75 pertain to the snapshot (evolution) type of output.

Table 75: Configuration keys for snapshot output.

Key Description
OUT_SNAPSHOT_NAME_n file name for snapshot output
OUT_SNAPSHOT_TYPE_n types of snapshot output to collect (separated by semicolons)

permissible values are VEHICLE; INTERSECTION;
SIGNAL

OUT_SNAPSHOT_BEGIN_TIME_n first time (in seconds from the midnight before simulation
start) at which to collect data

OUT_SNAPSHOT_END_TIME_n last time (in seconds from the midnight before simulation
start) at which to collect data

OUT_SNAPSHOT_TIME_STEP_n frequency (in seconds) at which to report data (i.e., write it
to disk)

OUT_SNAPSHOT_EASTING_MIN_n minimum easting (in meters) for which to report data
(currently unused)

OUT_SNAPSHOT_EASTING_MAX_n maximum easting (in meters) for which to report data
(currently unused)

OUT_SNAPSHOT_NORTHING_MIN_n minimum northing (in meters) for which to report data
(currently unused)

OUT_SNAPSHOT_NORTHING_MAX_n maximum northing (in meters) for which to report data
(currently unused)

OUT_SNAPSHOT_NODES_n path of the node specification file (file is described in Table
71)

OUT_SNAPSHOT_LINKS_n path of the link specification file (file is described in Table
72)

OUT_SNAPSHOT_SUPPRESS_n list of fields (separated by semicolons) not to include in the
output file

OUT_SNAPSHOT_FILTER_n list of expressions (of the form FIELD OPERATOR
VALUE, and separated by semicolons) for filtering records;
(valid values for FIELD are found in Table 64 through Table
66, and values for OPERATOR are found in Table 73)

TRANSIMS-LANL-1.0 – Files – May 1999 Page 135
LA-UR – 99-2579

The keywords in Table 76 pertain to the event type of output.

Table 76: Configuration keys for event output.

Key Description
OUT_EVENT_NAME_n file name for event output
OUT_EVENT_TYPE_n types of event output to collect

permissible value is TRAVELER
OUT_EVENT_BEGIN_TIME_n first time (in seconds from the midnight before simulation start)

at which to collect data
OUT_EVENT_END_TIME_n last time (in seconds from the midnight before simulation start)

at which to collect data
OUT_EVENT_EASTING_MIN_n minimum easting (in meters) for which to report data (currently

unused)
OUT_EVENT_EASTING_MAX_n maximum easting (in meters) for which to report data (currently

unused)
OUT_EVENT_NORTHING_MIN_n minimum northing (in meters) for which to report data (currently

unused)
OUT_EVENT_NORTHING_MAX_n maximum northing (in meters) for which to report data

(currently unused)
OUT_EVENT_SUPPRESS_n list of fields (separated by semicolons) not to include in the

output file
OUT_EVENT_FILTER_n list of expressions (of the form FIELDNAME OPERATOR

VALUE, and separated by semicolons) for filtering records;
(valid values for FIELD are found in Table 62 and valid values
for OPERATOR are found in Table 73)

TRANSIMS-LANL-1.0 – Files – May 1999 Page 136
LA-UR – 99-2579

The keywords in Table 77 pertain to the summary type of output.

Table 77: Configuration keys for summary output.

Key Description
OUT_SUMMARY_NAME_n file name for summary output
OUT_SUMMARY_TYPE_n types of summary output to collect (separated by semicolons)

permissible values are DENSITY; TIME; VELOCITY;
ENERGY

OUT_SUMMARY_BEGIN_TIME_n first time (in seconds from the midnight before simulation
start) at which to collect data

OUT_SUMMARY_END_TIME_n last time (in seconds from the midnight before simulation
start) at which to collect data

OUT_SUMMARY_TIME_STEP_n frequency (in seconds) at which to report data (i.e., write it
to disk)

OUT_SUMMARY_SAMPLE_TIME_n frequency (in seconds) at which to accumulate data
OUT_SUMMARY_BOX_LENGTH_n length of the boxes (in meters)
OUT_SUMMARY_EASTING_MIN_n minimum easting (in meters) for which to report data

(currently unused)
OUT_SUMMARY_EASTING_MAX_n maximum easting (in meters) for which to report data

(currently unused)
OUT_SUMMARY_NORTHING_MIN_n minimum northing (in meters) for which to report data

(currently unused)
OUT_SUMMARY_NORTHING_MAX_n maximum northing (in meters) for which to report data

(currently unused)
OUT_SUMMARY_LINKS_n path of the link specification file (file is described in Table

72)
OUT_SUMMARY_SUPPRESS_n list of fields (separated by semicolons) not to include in the

output file
OUT_SUMMARY_FILTER_n list of expressions (of the form FIELDNAME OPERATOR

VALUE, and separated by semicolons) for filtering records;
(valid values for FIELD are found in Table 67 and Table 68,
and valid values for OPERATOR are found in Table 73)

OUT_SUMMARY_VELOCITY_BINS_n number of bins used to cover the range of the velocity
histogram

OUT_SUMMARY_VELOCITY_MAX_n maximum velocity in the velocity histogram
OUT_SUMMARY_ENERGY_BINS_n number of bins used to cover the range of the energy

histogram
OUT_SUMMARY_ENERGY_MAX_n maximum energy in the energy histogram

TRANSIMS-LANL-1.0 – Files – May 1999 Page 137
LA-UR – 99-2579

The keywords in Table 78 are used only by the CompareDensity and CompareVelocity programs.
Only the first of these keywords is used by CompareVelocity.

Table 78: Configuration keys for the CompareDensity and CompareVelocity programs.

Key Description
OUT_SUMMARY_SPACE_COUNT_TOLERANCE_1 difference tolerated between snapshot

and summary count data
OUT_SUMMARY_SPACE_SUM_TOLERANCE_1 difference tolerated between snapshot

and summary sum data
OUT_SUMMARY_SPACE_SUMSQUARES_TOLERANCE_1 difference tolerated between snapshot

and summary sum-of-squares data

TRANSIMS-LANL-1.0 – Files – May 1999 Page 138
LA-UR – 99-2579

8.9 Examples

The example presented in this section uses the example network presented in Section 7.8. Table 79
presents a small set of plans that are simulated on the network.

Table 79: Plan set.

Trip/Leg Plan Description
Traveler 101,
Trip 1, Leg 1

101 3 1 1 1 0
24600 1002 2 1003 2
400 24600 1
1 0 1
6
300 0
8520 14141 8522 8521

Traveler 10 drives auto 300 from parking 1002 to
parking 1003 via nodes 8520, 14141, 8522, 8521.

Traveler 101,
Trip 1, Leg 2

101 3 1 2 0 0
2500 1003 2 3002 3
120 25000 1
0 2 0
0

Traveler 101 walks from parking 1003 to transit stop
3002.

Traveler 1,
Trip 1, Leg 1

1 10 1 1 1 0
25200 1005 2 1006 2
300 25200 1
1 1 5
6
100 20
8525 8603 14340 8608

Traveler 1 drives bus 100 along bus route 20 from
parking 1005 to parking 1006 via nodes 8525, 8603,
14340, 8608.

Traveler 101,
Trip 1, Leg 3

101 3 1 3 0 0
25200 3002 3 3005 3
300 25300 1
0 1 5
1
20

Traveler 101 rides bus from transit stop 3002 to transit
stop 3005 along bus route 20.

Traveler 1,
Trip 1, Leg 2

1 10 1 2 0 0
25500 1006 2 1006 2
0 25800 1
0 4 0
0

Traveler 1 has a layover activity at parking 1006 from
the time of arrival until time 25800 seconds past
midnight.

Traveler 101,
Trip 1, Leg 4

101 3 1 4 0 1
25500 3005 3 1006 2
30 25500 1
0 2 0
0

Traveler 101 walks from transit stop 3005 to parking
1006.

Traveler 1,
Trip 1, Leg 3

1 10 1 3 0 1
25800 1006 2 1005 2
200 25800 1
1 1 5
6
100 21
8608 14340 8603 8525

Traveler 1 drives bus 100 along bus route 21 from
parking 1006 to parking 1005 via nodes 8608, 14340,
8603, 8525.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 139
LA-UR – 99-2579

The following is an excerpt of the simulation configuration file that pertains to the output collected.

directory for simulation output (all output for a simulation is written to a
single directory)
OUT_DIRECTORY /home/Gershwinoutput1/kpb4jh

file name for snapshot output
OUT_SNAPSHOT_NAME_1 output.test.evol

first time (in seconds from the midnight before simulation start) at which to
collect data
OUT_SNAPSHOT_BEGIN_TIME_1 24610

last time (in seconds from the midnight before simulation start) at which to
collect data
OUT_SNAPSHOT_END_TIME_1 86400

frequency (in seconds) at which to report data (i.e., write it to disk)
OUT_SNAPSHOT_TIME_STEP_1 1

path of the node specification file
OUT_SNAPSHOT_NODES_1 /home/projects/transims/database/test/Test_Out

put_Node_Specification_Table

path of the link specification file
OUT_SNAPSHOT_LINKS_1 /home/projects/transims/database/test/Test_Out

put_Link_Specification_Table

file name for event output
OUT_EVENT_NAME_1 output.test.event

first time (in seconds from the midnight before simulation start) at which to
collect data
OUT_EVENT_BEGIN_TIME_1 0

last time (in seconds from the midnight before simulation start) at which to
collect data
OUT_EVENT_END_TIME_1 86400

file name for event output
OUT_SUMMARY_NAME_1 output.test.sum

first time (in seconds from the midnight before simulation start) at which to
collect data
OUT_SUMMARY_BEGIN_TIME_1 24610

last time (in seconds from the midnight before simulation start) at which to
collect data
OUT_SUMMARY_END_TIME_1 86400

frequency (in seconds) at which to report data (i.e., write it to disk)
OUT_SUMMARY_TIME_STEP_1 900

frequency (in seconds) at which to accumulate data
OUT_SUMMARY_SAMPLE_TIME_1 60

length of the boxes (in meters)
OUT_SUMMARY_BOX_LENGTH_1 150

path of the link specification file (file is described in Table 56)
OUT_SUMMARY_LINKS_1 /home/projects/transims/database/test/Test_Out

put_Link_Specification_Table

TRANSIMS-LANL-1.0 – Files – May 1999 Page 140
LA-UR – 99-2579

Table 80 (parts a and b) shows the traveler event output that was collected for an 1800-second
simulation.

Table 80a: Traveler event output.

ACCELS ANOMALY DISTANCESUM LEG LOCATION ROUTE SIGNALS STATUS STOPPED STOPS
A 0 0 0 1 1002 -1 0 16412 0 0
B 0 0 307.5 1 1002 -1 0 17156 0 0
C 0 0 307.5 1 1002 -1 0 19716 0 0
D 0 0 135 1 12384 -1 0 16778501 0 0
E 0 0 694 1 12384 -1 0 1286 0 0
F 0 0 2194 1 28800 -1 1 1286 59 0
G 0 0 3194 1 11487 -1 1 1286 59 0
H 0 0 5694 1 9705 -1 2 1286 63 0
I 0 0 6499.5 1 12407 -1 2 1286 63 0
J 0 0 6499.5 1 1003 -1 2 18692 63 0
K 0 0 6499.5 1 1003 -1 2 16900 63 0
L 0 0 6499.5 1 1003 -1 2 16392 63 0
M 0 0 0 2 1003 -1 0 16428 0 0
N 0 0 0 2 3002 20 0 32808 0 0
O 0 0 0 3 3002 20 0 32780 0 0
P 0 0 0 3 3002 20 0 45060 0 0
Q 0 0 0 1 1005 20 0 16412 0 0
R 0 0 0 1 1005 20 0 28676 0 0
S 0 0 0 1 1005 20 0 21252 0 0
T 0 0 0 1 1005 20 0 23812 0 0
U 0 0 0 1 1005 20 0 25860 0 0
V 1 0 15 1 3002 20 0 230661 0 0
W 0 0 7.5 3 3002 20 0 37636 0 0
X 0 0 7.5 3 3002 20 0 41220 0 0
Y 1 0 37.5 1 3002 20 0 132357 0 0
Z 2 0 374.5 1 2758 20 0 1286 0 0
AA 1 0 367 3 2758 20 0 262 0 0
BB 2 0 1374.5 1 2759 20 0 1286 0 0
CC 1 0 1367 3 2759 20 0 262 0 0
DD 21 0 4874.5 1 2750 20 0 1286 1 0
EE 20 0 4867 3 2750 20 0 262 1 0
FF 21 0 5874.5 1 2751 20 0 1286 1 1
GG 20 0 5867 3 2751 20 0 262 1 1
HH 21 0 6203 1 3005 20 0 230661 1 1
II 20 0 6195.5 3 3005 20 0 33284 1 1
JJ 20 0 6195.5 3 3005 -1 0 32776 1 1
KK 0 0 0 4 3005 -1 0 32812 0 0
LL 21 0 6233 1 3005 20 0 132357 1 1
MM 21 0 6233 1 2752 20 0 1286 1 1
NN 21 0 6225.5 1 1006 20 0 18692 1 1
OO 21 0 6225.5 1 1006 20 0 16900 1 1
PP 21 0 6225.5 1 1006 -1 0 16392 1 1
QQ 0 0 0 2 1006 -1 0 16428 0 0
RR 0 0 0 2 1006 -1 0 802852 0 0
SS 0 0 0 2 1006 21 0 540708 0 0
TT 0 0 0 2 1006 21 0 16424 0 0
UU 0 0 0 3 1006 21 0 16396 0 0
VV 0 0 0 3 1006 21 0 28676 0 0
WW 0 0 0 3 1006 21 0 21252 0 0
XX 0 0 0 3 1006 21 0 23812 0 0
YY 0 0 0 3 1006 21 0 25860 0 0
ZZ 1 0 353.5 3 2752 21 0 1286 0 0
AAA 1 0 1353.5 3 2751 21 0 1286 2 0
BBB 1 0 4853.5 3 2750 21 0 1286 3 1
CCC 1 0 5853.5 3 2759 21 0 1286 4 1
DDD 1 0 6225.5 3 2758 21 0 1286 4 1
EEE 1 0 6495.5 3 1005 21 0 18692 4 1
FFF 1 0 6495.5 3 1005 21 0 16900 4 1
GGG 1 0 6495.5 3 1005 21 0 16408 4 1

TRANSIMS-LANL-1.0 – Files – May 1999 Page 141
LA-UR – 99-2579

Table 80b: Traveler output data.
TIME TIMESUM TRAVELER TRIP TURN USER VEHICLE VEHTYPE VSUBTYPE YIELDS

A 24610 10 101 1 0 3 0 0 0 0
B 24610 10 101 1 0 3 300 1 0 0
C 24610 10 101 1 0 3 300 1 0 0
D 24610 0 101 1 0 3 300 1 0 0
E 24638 28 101 1 0 3 300 1 0 0
F 24780 170 101 1 0 3 300 1 0 1
G 24827 217 101 1 -1 3 300 1 0 1
H 24947 337 101 1 -1 3 300 1 0 1
I 24986 376 101 1 -1 3 300 1 0 1
J 24986 376 101 1 -1 3 300 1 0 1
K 24986 376 101 1 -1 3 300 1 0 1
L 24986 376 101 1 -1 3 0 0 0 1
M 24986 0 101 1 0 3 0 0 0 0
N 25106 0 101 1 0 3 0 0 0 0
O 25106 0 101 1 0 3 0 0 0 0
P 25106 0 101 1 0 3 0 0 0 0
Q 25200 0 1 1 0 10 0 0 0 0
R 25201 0 1 1 0 10 0 0 0 0
S 25201 0 1 1 0 10 100 5 0 0
T 25201 0 1 1 0 10 100 5 0 0
U 25201 0 1 1 0 10 100 5 0 0
V 25203 2 1 1 0 10 100 5 0 0
W 25209 103 101 1 0 3 100 5 0 0
X 25209 103 101 1 0 3 100 5 0 0
Y 25209 8 1 1 0 10 100 5 0 0
Z 25231 30 1 1 0 10 100 5 0 0
AA 25231 125 101 1 0 3 100 5 0 0
BB 25304 103 1 1 0 10 100 5 0 0
CC 25304 198 101 1 0 3 100 5 0 0
DD 25612 411 1 1 0 10 100 5 0 0
EE 25612 506 101 1 0 3 100 5 0 0
FF 25684 483 1 1 0 10 100 5 0 0
GG 25684 578 101 1 0 3 100 5 0 0
HH 25708 507 1 1 0 10 100 5 0 0
II 25712 606 101 1 0 3 100 5 0 0
JJ 25712 606 101 1 0 3 0 0 0 0
KK 25712 0 101 1 0 3 0 0 0 0
LL 25712 511 1 1 0 10 100 5 0 0
MM 25712 511 1 1 0 10 100 5 0 0
NN 25712 511 1 1 0 10 100 5 0 0
OO 25712 511 1 1 0 10 100 5 0 0
PP 25712 511 1 1 0 10 0 0 0 0
QQ 25712 0 1 1 0 10 0 0 0 0
RR 25712 0 1 1 0 10 0 0 0 0
SS 25712 0 1 1 0 10 0 0 0 0
TT 25712 0 1 1 0 10 0 0 0 0
UU 25712 0 1 1 0 10 0 0 0 0
VV 25800 0 1 1 0 10 0 0 0 0
WW 25800 0 1 1 0 10 100 5 0 0
XX 25800 0 1 1 0 10 100 5 0 0
YY 25800 0 1 1 0 10 100 5 0 0
ZZ 25823 23 1 1 0 10 100 5 0 0
AAA 25897 97 1 1 0 10 100 5 0 0
BBB 26153 353 1 1 0 10 100 5 0 0
CCC 26225 425 1 1 0 10 100 5 0 0
DDD 26250 450 1 1 0 10 100 5 0 0
EEE 26250 450 1 1 0 10 100 5 0 0
FFF 26250 450 1 1 0 10 100 5 0 0
GGG 26250 450 1 1 0 10 0 0 0 0

TRANSIMS-LANL-1.0 – Files – May 1999 Page 142
LA-UR – 99-2579

Table 81 (parts a and b) shows the first 30 seconds of vehicle snapshot data collected.

Table 81a: First 30 seconds of vehicle snapshot data.

AZIMUTH DISTANCE DRIVER EASTING ELEVATION LANE LINK
A 90 442.5 101 3005.25 1000 2 12384
B 90 465 101 3005.25 1000 2 12384
C 90 480 101 3005.25 1000 2 12384
D 90 502.5 101 3005.25 1000 2 12384
E 90 517.5 101 3005.25 999.99994 2 12384
F 90 540 101 3005.25 1000 2 12384
G 90 562.5 101 3005.25 1000.0001 2 12384
H 90 577.5 101 3005.25 1000 2 12384
I 90 600 101 3005.25 1000 2 12384
J 90 622.5 101 3005.25 1000 2 12384
K 90 645 101 3005.25 1000 2 12384
L 90 667.5 101 3005.25 1000 2 12384
M 90 690 101 3005.25 1000 2 12384
N 90 712.5 101 3005.25 1000 2 12384
O 90 735 101 3005.25 1000 2 12384
P 90 750 101 3005.25 1000 2 12384
Q 90 765 101 3005.25 1000 2 12384
R 90 787.5 101 3005.25 1000 2 12384
S 90 802.5 101 3005.25 1000 2 12384
T 90 825 101 3005.25 1000 2 12384
U 90 847.5 101 3005.25 1000 2 12384
V 90 862.5 101 3005.25 1000 2 12384
W 90 885 101 3005.25 1000.0001 2 12384
X 90 900 101 3005.25 1000 2 12384
Y 90 922.5 101 3005.25 1000 2 12384
Z 90 937.5 101 3005.25 1000 2 12384
AA 90 960 101 3005.25 1000 2 12384
BB 90 982.5 101 3005.25 1000 2 12384
CC 90 15 101 3005.25 1000 2 28800
DD 90 30 101 3005.25 1000 2 28800
EE 90 52.5 101 3005.25 1000 2 28800

TRANSIMS-LANL-1.0 – Files – May 1999 Page 143
LA-UR – 99-2579

Table 81b: First 30 seconds of vehicle snapshot data.
NODE NORTHING PASSENGERS TIME VEHICLE VEHTYPE VELOCITY

A 14136 1948.5 0 24610 300 1 15
B 14136 1971 0 24611 300 1 22.5
C 14136 1986 0 24612 300 1 15
D 14136 2008.5 0 24613 300 1 22.5
E 14136 2023.4999 0 24614 300 1 15
F 14136 2046 0 24615 300 1 22.5
G 14136 2068.5 0 24616 300 1 22.5
H 14136 2083.5 0 24617 300 1 15
I 14136 2106 0 24618 300 1 22.5
J 14136 2128.5 0 24619 300 1 22.5
K 14136 2151 0 24620 300 1 22.5
L 14136 2173.5 0 24621 300 1 22.5
M 14136 2196 0 24622 300 1 22.5
N 14136 2218.5 0 24623 300 1 22.5
O 14136 2241 0 24624 300 1 22.5
P 14136 2256 0 24625 300 1 15
Q 14136 2271 0 24626 300 1 15
R 14136 2293.5 0 24627 300 1 22.5
S 14136 2308.5 0 24628 300 1 15
T 14136 2331 0 24629 300 1 22.5
U 14136 2353.5 0 24630 300 1 22.5
V 14136 2368.5 0 24631 300 1 15
W 14136 2391 0 24632 300 1 22.5
X 14136 2406 0 24633 300 1 15
Y 14136 2428.5 0 24634 300 1 22.5
Z 14136 2443.5 0 24635 300 1 15
AA 14136 2466 0 24636 300 1 22.5
BB 14136 2488.5 0 24637 300 1 22.5
CC 8520 2515 0 24638 300 1 22.5
DD 8520 2530 0 24639 300 1 15
EE 8520 2552.5 0 24640 300 1 22.5

Table 82 shows the intersection snapshot data collected during the entire simulation.

Table 82: Intersection snapshot data.

LANE LINK NODE QINDEX TIME VEHICLE
2 28800 14141 1 24780 300
1 9705 8521 1 24947 300

TRANSIMS-LANL-1.0 – Files – May 1999 Page 144
LA-UR – 99-2579

Table 83 shows the signal snapshot data collected during the first second of the simulation.

Table 83: Signal snapshot data.

LANE LINK NODE SIGNAL TIME
1 9704 8521 5 24610
2 9704 8521 5 24610
1 9705 8521 3 24610
1 12407 8521 5 24610
2 12407 8521 5 24610
3 12407 8521 3 24610
1 9706 8521 3 24610
1 11487 14141 3 24610
2 11487 14141 3 24610
3 11487 14141 3 24610
4 11487 14141 3 24610
5 11487 14141 3 24610
6 11487 14141 6 24610
1 11486 14141 5 24610
2 11486 14141 5 24610
3 11486 14141 5 24610
1 11495 14141 3 24610
2 11495 14141 3 24610
3 11495 14141 3 24610
4 11495 14141 3 24610
5 11495 14141 3 24610
6 11495 14141 7 24610
1 28800 14141 3 24610
2 28800 14141 3 24610
3 28800 14141 5 24610
4 28800 14141 5 24610
5 28800 14141 5 24610
6 28800 14141 6 24610

TRANSIMS-LANL-1.0 – Files – May 1999 Page 145
LA-UR – 99-2579

Table 84 shows the travel time summary data collected every 15 minutes.

Table 84: Travel time summary data.

COUNT LANE LINK NODE SUM SUMSQUARES TIME TURN VCOUNT VSUM VSUMSQUARES
1 1 11487 14141 47 2209 25510 -1 0 0 0
1 1 9705 8522 120 14400 25510 -1 0 0 0
1 2 28800 8520 142 20164 25510 -1 0 0 0
1 2 2759 8525 73 5329 25510 0 0 0 0
0 2 2759 8525 0 0 26410 0 0 0 0
1 1 2759 8603 72 5184 26410 0 0 0 0
1 2 2751 14340 72 5184 26410 0 0 0 0
1 1 2751 8608 74 5476 26410 0 0 0 0
0 1 11487 14141 0 0 26410 -1 0 0 0
1 2 2750 8603 308 94864 26410 0 0 0 0
1 1 2750 14340 256 65536 26410 0 0 0 0
0 1 9705 8522 0 0 26410 -1 0 0 0
0 2 28800 8520 0 0 26410 -1 0 0 0

TRANSIMS-LANL-1.0 – Files – May 1999 Page 146
LA-UR – 99-2579

Table 85 shows the link density summary table that was collected for one link at the first summary
collection time.

Table 85: Link density summary table.

COUNT DISTANCE LANE LINK NODE SUM SUMSQUARES TIME
0 975 1 2759 8525 0 0 25510
0 975 2 2759 8525 0 0 25510
0 975 3 2759 8525 0 0 25510
0 825 1 2759 8525 0 0 25510
0 825 2 2759 8525 0 0 25510
0 825 3 2759 8525 0 0 25510
0 675 1 2759 8525 0 0 25510
0 675 2 2759 8525 0 0 25510
0 675 3 2759 8525 0 0 25510
0 525 1 2759 8525 0 0 25510
1 525 2 2759 8525 7.5 56.25 25510
0 525 3 2759 8525 0 0 25510
0 375 1 2759 8525 0 0 25510
0 375 2 2759 8525 0 0 25510
0 375 3 2759 8525 0 0 25510
0 225 1 2759 8525 0 0 25510
0 225 2 2759 8525 0 0 25510
0 225 3 2759 8525 0 0 25510
0 75 1 2759 8525 0 0 25510
0 75 2 2759 8525 0 0 25510
0 75 3 2759 8525 0 0 25510
0 975 1 2759 8603 0 0 25510
0 975 2 2759 8603 0 0 25510
0 825 1 2759 8603 0 0 25510
0 825 2 2759 8603 0 0 25510
0 675 1 2759 8603 0 0 25510
0 675 2 2759 8603 0 0 25510
0 525 1 2759 8603 0 0 25510
0 525 2 2759 8603 0 0 25510
0 375 1 2759 8603 0 0 25510
0 375 2 2759 8603 0 0 25510
0 225 1 2759 8603 0 0 25510
0 225 2 2759 8603 0 0 25510
0 75 1 2759 8603 0 0 25510
0 75 2 2759 8603 0 0 25510

TRANSIMS-LANL-1.0 – Files – May 1999 Page 147
LA-UR – 99-2579

Table 86 shows the link velocity summary data that were collected for one link at the first
summary collection time.

Table 86: Link velocity summary data.

COUNT0 COUNT1 COUNT2 COUNT3 COUNT4 COUNT5 DISTANCE LINK NODE TIME
0 0 0 0 0 0 150 2759 8525 25510
0 0 0 0 0 0 300 2759 8525 25510
0 0 0 0 0 0 450 2759 8525 25510
0 0 1 0 0 0 600 2759 8525 25510
0 0 0 0 0 0 750 2759 8525 25510
0 0 0 0 0 0 900 2759 8525 25510
0 0 0 0 0 0 975 2759 8525 25510
0 0 0 0 0 0 150 2759 8603 25510
0 0 0 0 0 0 300 2759 8603 25510
0 0 0 0 0 0 450 2759 8603 25510
0 0 0 0 0 0 600 2759 8603 25510
0 0 0 0 0 0 750 2759 8603 25510
0 0 0 0 0 0 900 2759 8603 25510
0 0 0 0 0 0 975 2759 8603 25510

Table 87 shows the link energy summary data that were collected at the first summary collection
time.

TRANSIMS-LANL-1.0 - Files - May 1999 Page 148
LA-UR – 99-xxx

Table 87: Link energy summary data.

ENERGY0 ENERGY1 ENERGY10 ENERGY11 ENERGY12 ENERGY13 ENERGY14 ENERGY2 ENERGY3 ENERGY4 ENERGY5 ENERGY6 ENERGY7 ENERGY8 ENERGY9 LINK NODE TIME
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2757 8606 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2757 8524 25510
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2758 8524 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2758 8525 25510
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2759 8525 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2759 8603 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9704 8521 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9704 8523 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9706 8521 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9706 8524 25510
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12384 14136 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12384 8520 25510
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12407 8521 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12407 14136 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28804 14136 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28804 8525 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2751 14340 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2751 8608 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2752 8608 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2752 14142 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2753 14142 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2753 8610 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2754 8600 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2754 8522 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2755 8610 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2755 8600 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11486 14141 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11486 14142 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11487 8522 25510
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11487 14141 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11495 14141 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11495 14340 25510
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2750 8603 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2750 14340 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9705 8521 25510
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9705 8522 25510
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28800 8520 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28800 14141 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2756 8600 25510
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2756 8606 25510

TRANSIMS-LANL-1.0 - Files - May 1999 Page 149
LA-UR – 99-xxx

9. EMISSIONS ESTIMATOR

The TRANSIMS Emission Estimator module is designed to calculate emissions in 30-meter
segments along a link for chosen time periods (normally 15 minutes). It gives estimates of tailpipe
emissions of Nitrogen Oxides (NOx), Carbon Monoxide (CO), and hydrocarbons from light-duty
vehicles. It also gives fuel-consumption that can be used to calculate emissions of Carbon Dioxide
(CO2).

9.1 Terms

Link A portion of a highway or street with lanes going in a single direction
between intersections.

Light-duty Vehicles Cars, sport-utility vehicles, and small trucks.

Nitrogen-Oxides Nitric Oxide and Nitrogen Dioxides.

Soak Time The length of time an engine has been off before the current trip began.

Vehicle Flux The product of the density of vehicles by their speeds

9.2 File Format

This section describes the file formats of each of the five input files for the Light-Duty Tailpipe
Vehicle submodule and the two output files that it produces. The file names are defined in the code
but may be changed using the emissions configuration keys. See Volume 2— Modules for an
explanation of those keys.

9.2.1 readca.out

The file Readca.out contains the link velocity summary data produced by the microsimulation
described in Section 8.2.7 and reformatted for input into the Emissions Estimator.. The
transformation may be performed by using the readca program described in Section 9.3. This file
is an input file for the Light-Duty Tailpipe submodule. The first five items described in Table 88
(NV through LENGTH) appear in a single record, followed by NV records containing the six
COUNT fields in order in each record. This sequence is repeated for each LINK, NODE, and
TIME step in the original file.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 150
LA-UR – 99-2579

Table 88: Link velocity fields in readca.out (assuming the microsimulation was run with
OUT_SUMMARY_VELOCITY_BINS set to 6).

Field Interpretation
NV Number of velocity records for this link, equivalent to the number of boxes that partition the

link.
TIME Current time (seconds from midnight).
LINK Link ID being reported.
NODE Node ID from which the vehicles were traveling away.
LENGTH Length of box.
COUNT0 Number of vehicles with velocities in the range [0, 7.5).
COUNT1 Number of vehicles with velocities in the range [7.5, 15).
COUNT2 Number of vehicles with velocities in the range [15, 22.5).
COUNT3 Number of vehicles with velocities in the range [22.5, 30).
COUNT4 Number of vehicles with velocities in the range [30, 37.5).
COUNT5 Number of vehicles with velocities in the range [37.5, infinity).

9.2.2 ARRAY.INP

The file ARRAY.INP is used in conjunction with array.out and contains parameters describing the
number of records and increments used in array.out. Several fields are unused by the Light-Duty
Tailpipe submodule.

Table 89: Fields in ARRAY.INP.

Field Interpretation
T0 Time since engine start; not used.
RGRADE0 Representative minimum grade; not used.
DRGRADE Spacing in grade arrays; presently not used.
V0ARRAY Representative speed for the lowest speed index (mph); not used.
DVARRAY Speed bin size (mph).
A0ARRAY Acceleration for lowest acceleration index (feet/sec).
DACCARAY Acceleration bin size (feet/sec).
NGRADE Number of grades in the emission arrays; not used.
NVARRY Number of velocity bins in the emission arrays.
NAARRAY Number of acceleration bins in the emission arrays.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 151
LA-UR – 99-2579

9.2.3 array.out

The file array.out gives the composite vehicle emissions in 2-mph speed bins and 1.5 feet/second
acceleration bins. This file is an input file for the Light-Duty Tailpipe submodule. The data in this
file is for the case when there is no grade in the roadway. The first two lines of the file contain
header information that is ignored. Only the data fields are described in Table 90.

Table 90: Composite vehicle emissions fields.

Field Interpretation
VARRAY Representative speed (mph) for emissions calculation; not used.
ACARRAY Representative acceleration for emissions calculation; not used.
HCTIJK Hydrocarbon tailpipe emission rate (grams/sec).
COTIJK Carbon monoxide tailpipe emission rate (grams/sec).
NOXTIJK Nitrogen oxides tailpipe emission rate (grams/sec).
FECON Fuel consumption rate (grams/sec).

9.2.4 wcemratios

The file wcemratios is an input for the Light-Duty Tailpipe submodule that contains ratios of cold
emissions to hot engine emissions. It contains eight records, one for each of seven groupings based
on integrated velocity-acceleration product, and an additional grouping for engines that have been
fully warmed-up. The first grouping has a soak time of 60 minutes, and the groupings appear in
order from lowest integrated velocity-acceleration product to highest. The values are a multiplier
that represents the ratio of emissions for vehicles beginning a link in the group to the emissions of a
vehicle with the same driving pattern and a fully warmed up engine and catalyst.

Table 91: Fields in wcemratios.

Field Interpretation
HCR Multiplier for hydrocarbon emissions.
COR Multiplier for carbon monoxide emissions.
XNOXR Multiplier for nitrogen oxides emissions.
FCR Multiplier for fuel consumption.

9.2.5 vehcold.dis

The file vehcold.dis is an input file for the Light-Duty Tailpipe submodule that is used in
conjunction with wcemratios. It contains the distribution of vehicles entering the link stratified by
the time integrated, velocity-acceleration product and by the time the engine was idle before the
start of the current trip. Note that negative accelerations are ignored in the calculation of the time-
integrated, velocity-acceleration products. This distribution is used to determine what cold/warm
emission ratios should be used.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 152
LA-UR – 99-2579

Table 92: Fields in vehcold.dis.

Field Interpretation
VCOLD1 Fraction of the vehicles entering the link that have had time-integrated, velocity-acceleration

products in the range of 0-18 cells squared per second squared after being idle for an hour or
more; 18 cells squared per second cubed is the typical amount for a vehicle to accelerate to
speed on an arterial from a stop; a cell is 7.5 meters.

VCOLD2 Fraction of the vehicles entering the link that have had time-integrated, velocity-acceleration
products in the range of 19-36 cells squared per second squared after being idle for an hour
or more.

VCOLD3 Fraction of the vehicles entering the link that have had time-integrated, velocity-acceleration
products in the range of 37-54 cells squared per second squared after being idle for an hour
or more.

VCOLD4 Fraction of the vehicles entering the link that have had time-integrated, velocity-acceleration
products in the range of 55-72 cells squared per second squared after being idle for an hour
or more.

VCOLD5 Fraction of the vehicles entering the link that have had time-integrated, velocity-acceleration
products in the range of 73-90 cells squared per second squared after being idle for an hour
or more.

VCOLD6 Fraction of the vehicles entering the link that have had time-integrated, velocity-acceleration
products in the range of 91-108 cells squared per second squared after being idle for an hour
or more.

VCOLD7 Fraction of the vehicles entering the link that have had time-integrated, velocity-acceleration
products in the range of 109-126 cells squared per second squared after being idle for an hour
or more.

VCOLD8 Fraction of the vehicles entering the link that have had time-integrated, velocity-acceleration
products greater than 126 cells squared per second squared after being idle for an hour or
more or were idle for less than 1 hour.

9.2.6 readart.out

The file readart.out is an output file produced by the Light-Duty Tailpipe submodule. It is a
debugging file that provides intermediate output for the emission calculations.

The first record contains ICX and DELTAF. The second record contains six values of F. The
third record contains six values of DEN. The fourth record contains six values of FIJ. The fifth
record contains six values of HIJ. The sixth record contains six values of VEHFLUX and
VEHFT. The seventh record contains six values of VEHD and VEHDT. The eighth record
contains VBAR, SDEVRAT, VLOWRI, VUPPRI and V2SDEV. The ninth record contains five
values of VEHFLUXL. The tenth record contains five values of VEHFLUXM. The eleventh
record contains five values of VEHFLUXH. The twelfth through fourteenth records contain five
values of SPDBAR and SPDC. The fifteenth through seventeenth records contain eighteen values
of PIJ. Records 1 - 17 are repeated NV times.

The final records contain N, XNOSUL, XNOSUC, XNOSUH, COSUL, COSUC, COSUH,
V2SDEV, SDEV, PL, PCC, and PH. The final records are repeated NV times.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 153
LA-UR – 99-2579

Table 93: Fields in readart.out

Field Interpretation
ICX Segment of which the calculations are made.
DELTAF Width of the highest speed bin, always 24.6 feet per second.
F Average number of vehicles in a 7.5 meter cell.
DEN Fitted average number of vehicles per 7.5 meter cell.
FIJ Estimated average vehicle densities per spatial cell (24.6 feet) and per speed cell (24.6 feet per

second).
HIJ Gradient in estimated average vehicle density in units of number per spatial cell squared per speed

cell.
VEHFLUX Estimated vehicle flux in each speed bin for speed bins 0-5 in units of number times feet per

second.
VEHFT Total estimated vehicle flux.
VEHD Estimated number of vehicles in each speed bin in each cell
VEHDT Estimated total number of vehicles in a spatial cell.
VBAR Estimated mean speed in feet per second.
SDEVRAT Estimated ratio of the standard-deviation of speed to mean speed.
VLOWRI Cutoff speed for the slowest one-third of the vehicles defined by flux in feet per second.
VUPPRI Cutoff speed for the slowest two-thirds of the vehicles defined by flux in feet per second.
V2SDEV Product of the square of the mean speed and the difference between the speed standard deviation

and its low congestion reference value in units of feet cubed per second cubed.
VEHFLUXL Estimated vehicle flux for the slowest third of the vehicles for the current segment, followed by the

that of the next four segments down the link.
VEHFLUXM Estimated vehicle flux for the middle third of the vehicles for the current segment, followed by the

that of the next four segments down the link.
VEHFLUXH Estimated vehicle flux for the fastest third of the vehicles for the current segment, followed by the

that of the next four segments down the link.
SPDBAR Estimated average cube of the speed in units of feet cubed per second cubed for the current

segment followed by that of four following segments down the link.
SPDC Estimated gradient in the cube of the speed normalized by the cube of a spatial cell per second

(24.6**3) in units of inverse feet.
PIJ First three values give the probability of a hard acceleration for the slowest third, the middle third,

and the fastest third of the vehicles for the segment, while the 7th through the 9th give the
probability for insignificant accelerations for the slowest, middle, and fastest thirds respectively.
Currently, hard decelerations are not included, they would occupy the 13th through 15th slots.

N Segment for which the output is reported.
XNOSUL Estimated NOx emissions for the slowest third in units of grams per 7.5 meter cell.
XNOSUC Estimated NOx emissions for the middle third in units of grams per 7.5 meter cell.
XNOSUH Estimated NOx emissions for the fastest third in units of grams per 7.5 meter cell.
COSUL Estimated CO emissions for the slowest third in units of grams per 7.5 meter cell.
COSUC Estimated CO emissions for the middle third in units of grams per 7.5 meter cell.
COSUH Estimated CO emissions for the fastest third in units of grams per 7.5 meter cell.
V2SDEV Product of the square of the mean speed and the difference between the speed standard deviation

and its low congestion reference value in units of feet cubed per second cubed.
SDEV Standard deviation of speed derived from the estimated distribution.
PL Probability of a hard acceleration in the slowest third; unlike the earlier reference this includes an

adjustment if the slowest one-third is in the first speed bin.
PCC Probability of a hard acceleration in the middle third; unlike the earlier reference this includes an

adjustment if the middle one-third is in the first speed bin.
PH Probability of a hard acceleration in the fastest third; unlike the earlier reference this includes an

adjustment if the fastest one-third is in the first speed bin.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 154
LA-UR – 99-2579

9.2.7 emissions.out

The file emissions.out is an output file produced by the Light-Duty Tailpipe submodule. This file
is written using the variable size box format and is ready to be visualized with the Output
Visualizer. Each record contains the five fields required by this format plus six data values as
described in Table 94.

Table 94: Emissions output for Output Visualizer.

Field Interpretation
TIME Current time (seconds from midnight).
LINK Link ID being reported.
NODE Node ID vehicles were traveling away from.
DISTANCE Ending distance of the box (in meters) from the setback of the node from which the

vehicles were traveling away.
LENGTH Length of box.
VTT Average speed in feet per second.
NOX Nitrogen oxides emissions (milligrams per 30 meter segment).
CO Carbon monoxide emissions (grams per 30 meter segment).
HC Hydrocarbon emissions (milligrams per 30 meter segment).
FE Fuel consumption (grams per 30 meter segment).
FLUX Vehicle flux in number times speed in feet per second.

9.3 Utility Programs

9.3.1 Readca

The Readca program transforms the link velocity summary output described in Section 8.2.7 into
the format required by the emissions module as described in Section 9.2.1. The link is partitioned
into boxes of a constant size except that the last box on the link may be shorter than the others.
The Readca program proportionally inflates the values for the last box to what might be expected
if the box were full sized.

Note that Readca includes some assumptions that are more restrictive than the generality in the
output available from the microsimulation. The program assumes that the boxes that partition the
link are 30 meters long; a value other than 30 for the microsimulation parameter
OUT_SUMMARY_BOX_LENGTH used when collecting velocity data will result in velocity
summary data that cannot be correctly processed by Readca. The Readca program assumes
exactly six velocity histogram bins are defined as described in Table 88. The simulation needs to
be run with the configuration key OUT_SUMMARY_VELOCITY_BINS set to 6 in order for this
to be accomplished. The program also assumes that the maximum length of a link is 3600 meters.
An error message is produced for links that exceed this length.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 155
LA-UR – 99-2579

9.4 Files

Table 95: Emission Estimator library files.

Type File Name Description
Binary Files libTIO.a TRANSIMS Interfaces library
Source Files libGlobals.a TRANSIMS Global library

carlastcold.C Main emissions module that takes microsimulation velocity
summary data and outputs emissions that can be displayed in the
Output Visualizer

ENVConfigKeys.h Defines emissions configuration keys
readca.C Reads in a microsimulation velocity summary output file and outputs

the velocity data in a format that can be inputted to the main
emissions module

9.5 Examples

The examples presented in this section use the calibration 2 network which is the intersection
calibration network. Figure 4presents an example of some of the configuration parameters that
pertain to the Emissions Estimator.

Figure 4: Example configuration parameters.

PLAN_FILE $TRANSIMS_ROOT/data/plans/Tee.plans
VEHICLE_FILE $TRANSIMS_ROOT/data/vehicles/Tee.vehicles

OUT_DIRECTORY $TRANSIMS_ROOT/output
OUT_SUMMARY_NAME_1 tee.sum
OUT_SUMMARY_LINKS_1 $TRANSIMS_ROOT/output-specs/tee_output_links
OUT_SUMMARY_BOX_LENGTH_1 30
OUT_SUMMARY_TYPE_1 VELOCITY
OUT_SUMMARY_SAMPLE_TIME_1 1
OUT_SUMMARY_TIME_STEP_1 900
OUT_SUMMARY_VELOCITY_BINS_1 6
OUT_SUMMARY_VELOCITY_MAX_1 45
OUT_SUMMARY_ENERGY_BINS_1 14
OUT_SUMMARY_ENERGY_MAX_1 224

NET_DIRECTORY $TRANSIMS_ROOT/data/networks/
NET_NODE_TABLE Calibration_2_Nodes
NET_LINK_TABLE Calibration_2_Links
NET_POCKET_LANE_TABLE Calibration_2_Pocket_Lanes
NET_PARKING_TABLE Calibration_2_Parking
NET_LANE_CONNECTIVITY_TABLE Calibration_2_Lane_Connectivity
NET_UNSIGNALIZED_NODE_TABLE Calibration_2_Unsignalized_Nodes
NET_SIGNALIZED_NODE_TABLE Calibration_2_Signalized_Nodes
NET_PHASING_PLAN_TABLE Calibration_2_Phasing_Plans
NET_TIMING_PLAN_TABLE Calibration_2_Timing_Plans
NET_STUDY_AREA_LINKS_TABLE Calibration_2_Study_Links

EMISSIONS_ARRAY_PARAMETERS_FILE $TRANSIMS_ROOT/data/emissions/ARRAY.INP
EMISSIONS_COMPOSITE_INPUT_FILE $TRANSIMS_ROOT/data/emissions/array.out
EMISSIONS_MICROSIM_VELOCITY_FILE readca.out
EMISSIONS_VEHICLE_COLD_DISTRIBUTION $TRANSIMS_ROOT/data/emissions/vehcold.dis
EMISSIONS_WCEM_RATIOS_FILE $TRANSIMS_ROOT/data/emissions/wcemratios

TRANSIMS-LANL-1.0 – Files – May 1999 Page 156
LA-UR – 99-2579

A portion of a microsimulation velocity summary file is shown in Figure 5. This data was
collected on the intersection calibration network using the configuration parameters set to the
values in Figure 4. The data consists of the velocity bins for link 1 starting at node 6 at time step
900. There are seventeen boxes on that particular link. Notice that the last box is only 15 meters
long instead of 30 meters..

Figure 5: Example velocity summary file.

COUNT0 COUNT1 COUNT2 COUNT3 COUNT4 COUNT5 COUNT6 DISTANCE LINK NODE TIME
0 0 0 0 0 0 0 30 1 6 900
0 0 0 0 0 0 0 60 1 6 900
0 0 0 0 0 0 0 90 1 6 900
0 0 0 0 0 0 0 120 1 6 900
0 0 0 0 0 0 0 150 1 6 900
0 0 0 0 0 0 0 180 1 6 900
0 0 0 0 0 0 0 210 1 6 900
0 0 0 0 0 0 0 240 1 6 900
1334 990 237 157 0 0 0 270 1 6 900
1383 1983 465 68 232 0 0 300 1 6 900
880 1714 607 123 36 0 0 330 1 6 900
406 1035 604 246 76 0 0 360 1 6 900
199 538 482 356 194 0 0 390 1 6 900
83 227 296 370 336 0 0 420 1 6 900
17 60 148 336 508 0 0 450 1 6 900
7 18 81 307 601 0 0 480 1 6 900
0 6 45 183 293 0 0 495 1 6 900

A portion of a readca.out file is shown in Figure 6. The readca.out file is created by the Readca
program, which reformats the microsimulation output into a format that can be read in by the
Emissions Estimator. Figure 6 contains the output from the sample data in Figure 5.

Figure 6: Example readca.out file.

 nv= 17 900.0 1 6 15.0
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
 1.3340E+03 9.9000E+02 2.3700E+02 1.5700E+02 0.0000E+00 0.0000E+00
 1.3830E+03 1.9830E+03 4.6500E+02 6.8000E+01 2.3200E+02 0.0000E+00
 8.8000E+02 1.7140E+03 6.0700E+02 1.2300E+02 3.6000E+01 0.0000E+00
 4.0600E+02 1.0350E+03 6.0400E+02 2.4600E+02 7.6000E+01 0.0000E+00
 1.9900E+02 5.3800E+02 4.8200E+02 3.5600E+02 1.9400E+02 0.0000E+00
 8.3000E+01 2.2700E+02 2.9600E+02 3.7000E+02 3.3600E+02 0.0000E+00
 1.7000E+01 6.0000E+01 1.4800E+02 3.3600E+02 5.0800E+02 0.0000E+00
 7.0000E+00 1.8000E+01 8.1000E+01 3.0700E+02 6.0100E+02 0.0000E+00
 0.0000E+00 1.2000E+01 9.0000E+01 3.6600E+02 5.8600E+02 0.0000E+00

Figure 7 shows the contents of the ARRAY.INP file that is used as input by the Emissions
Estimator. It contains the parameters describing the number of records and increments used in the
array.out file.

Figure 7: Example ARRAY.INP file.

 600. -8.00 1.0 0.04 2. -12. 1.5
 17 40 17

TRANSIMS-LANL-1.0 – Files – May 1999 Page 157
LA-UR – 99-2579

Figure 8 shows a portion of the contents of the array.out file that is used as input the Emissions
Estimator. The array.out file contains the composite vehicle emissions in 2-mph speed bins and
1.5 feet/second acceleration bins. In this version of the Emissions Estimator, there are 17
acceleration bins and 40 velocity bins. Figure 8 contains data for all of the velocity bins for the
first acceleration bin.

Figure 8: Example array.out file.

 array for no grade Riverside region composite
 v acc hc co nox fuel
 1.0000 -8.1816 0.0064 0.0424 0.0010 0.4867
 3.0000 -8.1816 0.0166 0.0424 0.0010 0.4867
 5.0000 -8.1816 0.0273 0.0424 0.0011 0.4867
 7.0000 -8.1816 0.0405 0.0424 0.0011 0.4867
 9.0000 -8.1816 0.0605 0.0424 0.0015 0.4867
 11.0000 -8.1816 0.0799 0.0424 0.0016 0.4867
 13.0000 -8.1816 0.0998 0.0424 0.0016 0.4867
 15.0000 -8.1816 0.1199 0.0424 0.0016 0.4867
 17.0000 -8.1816 0.1399 0.0424 0.0015 0.4867
 19.0000 -8.1816 0.1592 0.0424 0.0016 0.4867
 21.0000 -8.1816 0.1792 0.0424 0.0016 0.4867
 23.0000 -8.1816 0.1993 0.0424 0.0016 0.4867
 25.0000 -8.1816 0.2192 0.0424 0.0016 0.4867
 27.0000 -8.1816 0.2386 0.0424 0.0016 0.4867
 29.0000 -8.1816 0.2587 0.0424 0.0016 0.4867
 31.0000 -8.1816 0.2787 0.0424 0.0016 0.4867
 33.0000 -8.1816 0.2981 0.0424 0.0016 0.4867
 35.0000 -8.1816 0.3181 0.0424 0.0016 0.4867
 37.0000 -8.1816 0.3380 0.0424 0.0016 0.4867
 39.0000 -8.1816 0.3580 0.0424 0.0016 0.4867
 41.0000 -8.1816 0.3774 0.0424 0.0016 0.4867
 43.0000 -8.1816 0.3974 0.0424 0.0016 0.4867
 45.0000 -8.1816 0.4174 0.0424 0.0016 0.4867
 47.0000 -8.1816 0.4368 0.0424 0.0016 0.4867
 49.0000 -8.1816 0.4568 0.0424 0.0016 0.4867
 51.0000 -8.1816 0.4768 0.0424 0.0016 0.4867
 53.0000 -8.1816 0.4968 0.0424 0.0016 0.4867
 55.0000 -8.1816 0.5163 0.0424 0.0016 0.4867
 57.0000 -8.1816 0.5362 0.0424 0.0016 0.4867
 59.0000 -8.1816 0.5562 0.0424 0.0016 0.4867
 61.0000 -8.1816 0.5756 0.0424 0.0016 0.4867
 63.0000 -8.1816 0.5956 0.0424 0.0016 0.4867
 65.0000 -8.1816 0.6156 0.0424 0.0016 0.4867
 67.0000 -8.1816 0.6356 0.0424 0.0016 0.4867
 69.0000 -8.1816 0.6550 0.0424 0.0016 0.4867
 71.0000 -8.1816 0.6750 0.0424 0.0016 0.4867
 73.0000 -8.1816 0.6950 0.0424 0.0016 0.4867
 75.0000 -8.1816 0.7150 0.0424 0.0016 0.4867
 77.0000 -8.1816 0.7344 0.0424 0.0016 0.4867
 79.0000 -8.1816 0.7544 0.0424 0.0016 0.4867

Figure 9shows the contents of the wcemratios file that is used as input by the Emissions Estimator.
It contains the ratios of cold emissions to hot engine emissions.

Figure 9: Example wcemratios file.

 2.675115 2.116624 1.499590 1.086956
 1.736057 1.388528 1.166301 1.089943
 1.499989 1.172226 1.069732 1.099898
 1.364250 1.040638 1.021857 1.078881
 1.248882 0.946900 1.022250 1.071876
 1.159666 0.981162 1.084750 1.079329
 1.120635 1.061412 1.119071 1.074729
 1.000000 1.000000 1.000000 1.000000

TRANSIMS-LANL-1.0 – Files – May 1999 Page 158
LA-UR – 99-2579

Figure 10 shows the contents of the vehcold.dis file that is inputted into the Emissions Estimator.
It contains the distribution of vehicles entering the link stratified by the time integrated, velocity-
acceleration product and by the time the engine was idle before the start of the current trip.

Figure 10: Example vehcold.dis file.

0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.00

Figure 11 shows a portion of the contents of a readart.out file that is created by the Emissions
Estimator. The readart.out file is a debugging file used to provide immediate output for the
emissions calculations. Figure 11 contains the output for calculations done on the link seen in
Figure 5and Figure 6 for the first box that actually contains vehicle velocities.

Figure 11: Example readart.out file.

icx= 9 deltaf= 24.6
 1334.0 990.0 237.0 157.0 0.0 0.0
 1334.0 990.0 237.0 157.0 0.0 0.0
 5.511E-01 4.090E-01 9.791E-02 6.486E-02 0.000E+00 0.000E+00
 1.632E-02 -2.788E-02 2.586E-03 -5.273E-03 0.000E+00 -0.000E+00

 4.982E+02 5.238E+03 2.994E+03 2.736E+03 0.000E+00 0.000E+00 1.147e+04
 3.335E+02 2.475E+02 5.925E+01 3.925E+01 0.000E+00 0.000E+00 6.795e+02
 16.87 1.22417 25.38 55.29 3973.63
 3821.896 8269.800 7104.944 6757.693 6864.691
 3821.911 8269.743 7104.894 6757.607 6864.621
 3821.843 8269.757 7104.881 6757.621 6864.668
 2474. 3957. 4909. 12280. 34195. 0.0415
 58176. 49331. 45331. 105579. 275911. 0.9770
 299058. 588877. 257405. 469191. 744376. 5.0222
 0.028 1.000 1.000 0.000 0.000 0.000
 0.972 0.000 0.000 0.000 0.000 0.000
 0.000 0.000 0.000 0.000 0.000 0.000
 9. 3.48 2.44 2.23 72.5 53.7 56.2 3973.6 20.7 0.028 1.000
1.000

TRANSIMS-LANL-1.0 – Files – May 1999 Page 159
LA-UR – 99-2579

Figure 12 shows a portion of the contents of an emissions.out file that is created by the Emissions
Estimator. The emissions.out file is used as input into the Output Visualizer. Figure 12 contains
the data for timestep 900 link 1 running from node 6 as seen in the above examples.

Figure 12: Example emissions.out file.

TIME LINK NODE DISTANCE LENGTH VTT NOX CO HC FE FLUX
900 1 6 30.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0
900 1 6 60.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0
900 1 6 90.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0
900 1 6 120.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0
900 1 6 150.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0
900 1 6 180.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0
900 1 6 210.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0
900 1 6 240.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0
900 1 6 270.0 30.0 11.5 32604.5 729.9 77223.1 2960.7 7797.0
900 1 6 300.0 30.0 16.3 12839.2 335.7 34413.7 2908.9 16868.0
900 1 6 330.0 30.0 17.3 21346.9 505.3 59210.4 2921.2 14493.0
900 1 6 360.0 30.0 23.3 80315.2 1580.5 161250.3 5311.7 13772.0
900 1 6 390.0 30.0 31.7 67776.4 1351.8 140743.9 4397.7 14001.0
900 1 6 420.0 30.0 41.4 51067.9 990.5 102631.5 3367.0 13593.0
900 1 6 450.0 30.0 51.9 43343.4 827.7 84388.2 2894.5 13868.0
900 1 6 480.0 30.0 56.2 41092.1 760.3 76519.0 2772.0 14246.0
900 1 6 495.0 15.0 56.2 7165.3 123.3 10860.7 892.5 14809.0

Figure 13 shows the Output Visualizer emissions colormaps that were used in this version of the
Emissions Estimator to color the network’s boxes. Thresholds and their colors are defined in the
colormaps. See the section on Visualization for interpretation of this file.

Figure 13: Example Output Visualizer emissions colormaps.

6 0.0 80.0 Emissions Velocity Map
1.0 8
20.0 0
40.0 9
60.0 5
80.0 3
6 0.0 70000.0 Emissions Nitrogen Oxide Map
200.0 8
20000.0 0
30000.0 9
50000.0 5
70000.0 3
6 0.0 1200.0 Emissions Carbon Monixide Map
1.0 8
300.0 0
600.0 9
900.0 5
1200.0 3
6 0.0 140000.0 Emissions Hydrocarbons Map
200.0 8
20000.0 0
60000.0 9
100000.0 5
140000.0 3
6 0.0 4000.0 Emissions Fuel Economy Map
20.0 8
1000.0 0
2000.0 9
3000.0 5
4000.0 3
6 0.0 14000.0 Emissions Flux Map
200.0 8
2000.0 0
6000.0 9
10000.0 5
14000.0 3

TRANSIMS-LANL-1.0 – Files – May 1999 Page 160
LA-UR – 99-2579

Figure 14 through Figure 19 show examples of visualization of emissions calculated for the
Intersection calibration network.

Figure 14: Velocities.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 161
LA-UR – 99-2579

Figure 15: NOx (nitrogen oxides) emissions.

Figure 16: CO (carbon monoxide) emissions.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 162
LA-UR – 99-2579

Figure 17: HC (hydrocarbon) emissions.

Figure 18: FE (fuel consumption).

Figure 19: FLUX (vehicle flux).

TRANSIMS-LANL-1.0 – Files – May 1999 Page 163
LA-UR – 99-2579

TRANSIMS-LANL-1.0 – Files – May 1999 Page 164
LA-UR – 99-2579

10. ITERATION DATABASE

This section describes the iteration database, which records summary data for each execution of a
TRANSIMS program.

10.1 Terms

mmapped Memory mapped; files are mapped directly into memory.

iteration Execution of one TRANSIMS program leg (e.g., Activity Generator, Route
Planner, Traffic Microsimulator).

10.2 File Format

Two types of files will be used by the ITDB: the index file and the iteration file. The index file is
described in Section 11. The primary key is given as records are added to the database (e.g.,
traveler ID), and the secondary key is the iteration number.

The iteration file is a text file with comma-separated fields. The meaning of the fields is
determined when the file is created. The first line of each iteration file describes the iteration from
which the file was generated. The second line of each file is a comma-separated list of field
headings. Each field is assumed to be numeric (either integer or floating point).

10.3 Interface Functions

In any function that takes a string representing a record as an argument, an empty field is
represented by two consecutive commas (i.e., “,,”). In any function that takes an array of strings
representing a record as an argument, a blank field can be represented by either an empty string or
a NULL pointer to a string. The last pointer in the array should be NULL.

The String functions return a null-terminated string that is a copy of the record/field requested.
The contents of the string are modifiable, and the string needs to be freed after use.

If a particular field is empty, it is assumed that the value for that field has not changed since the
last iteration.

The Data functions return a pointer into the mmapped file in which the record/field resides.
Changing data through this pointer will change the actual iteration file where the data resides. This
pointer should not be freed.

10.3.1 ITDB_Create
Signature: ITDB* ITDB_Create(char* base_filename, char* fields)

Description: Creates a new iteration database.

Argument: base_filename – filename to create files with, filename.idx for the index
and filename.#.it for each iteration, where # is the iteration number.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 165
LA-UR – 99-2579

fields – field names as a comma-separated string.

Return Value: A pointer to a new iteration database on iteration 0.

10.3.2 ITDB_CreateV
Signature: ITDB * ITDB_CreateV(char* base_filename, char*

 fields[], int key)

Description: Creates a new iteration database with the given filename.

Argument: base_filename – filename to create files with, filename.idx for the index
and filename.#.it for each iteration, where # is the iteration number.
fields – field names as an array of strings.
key – value of the key for which to return records.

Return Value: A pointer to a new iteration database on iteration 0.

10.3.3 ITDB_Open
Signature: ITDB* ITDB_Open(char* base_filename)

Description: Opens an existing ITDB.

Argument: base_filename – the filename of the ITDB.

Return Value: A pointer to an existing iteration database on the same iteration it had when
closed.

10.3.4 ITDB_Close
Signature: void ITDB_Close(ITDB* db)

Description: Closes an ITDB and free all resources. Upon return, db is no longer a valid
pointer.

Argument: db – the database to close.

Return Value: None.

10.3.5 ITDB_CurrentIteration
Signature: int ITDB_CurrentIteration(ITDB* db)

Description: Returns the current iteration number.

Argument: db – the itdb on which to operate.

Return Value: Current iteration number.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 166
LA-UR – 99-2579

10.3.6 ITDB_NewIteration
Signature: int ITDB_NewIteration(ITDB* db, char* comment)

Description: Starts on a new iteration.

Argument: db – the itdb on which to operate.
comment – comment to be stored as the first line of the new iteration file.

Return Value: New iteration number.

10.3.7 ITDB_Add
Signature: void ITDB_Add(ITDB* db, int key, char* data)

Description: Adds data to key for the current iteration. If data exists for the key given, the
new data is added to the index following the old data.

Argument: db – the itdb on which to operate.
key – value of primary key.
data – a comma-separated string of field values.

Return Value: None.

10.3.8 ITDB_AddV
Signature: void ITDB_AddV(ITDB*, int key, char* data[])

Description: Adds data to key for the current iteration. If data already exists for the key
given, the new data is added to the index following the old data.

Argument: db – the itdb on which to operate.
key – value of primary key.
data – an array of field values.

Return Value: None.

10.3.9 ITDB_GetCurrentString
Signature: char* ITDB_GetCurrentString(ITDB* db, int key)

Description: Get data for key from the current iteration.

Argument: db – the itdb in which to operate.
key – value of key for which to retrieve information.

Return Value: Null-terminated copy of the data. The caller is responsible for deleting this
string.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 167
LA-UR – 99-2579

10.3.10 GetCurrentData
Signature: char* ITDB_GetCurrentData(ITDB* db, int key)

Description: Get data for key from the current iteration.

Argument: db – the itdb on which to operate.
key – value of key for which to retrieve data.

Return Value: A pointer into the mmapped field. Changes to the string will change the
actual file. This pointer should not be freed.

10.3.11 ITDB_GetString
Signature: char* ITDB_GetString(ITDB* db, int it, int key)

Description: Get data for key from the given iteration.

Argument: db – the itdb on which to operate.
it – iteration from which to retrieve data.
key – value of key for which to retrieve information.

Return Value: Null-terminated copy of the data. The caller is responsible for deleting this
string.

10.3.12 ITDB_GetData
Signature: char* ITDB_GetData(ITDB* db, int it, int key)

Description: Get data for key from the given iteration.

Argument: db – the itdb on which to operate.
it – iteration from which to retrieve data.
key – value of key for which to retrieve information.

Return Value: A pointer into the mmapped file. Changes to the string will change the
actual file. This pointer should not be freed.

10.3.13 ITDB_GetTotalString
Signature: char* ITDB_GetTotalString(ITDB* db, int key)

Description: Returns the latest data over all iterations for key. Searches back through the
iterations for the last non-blank entry for each field.

Argument: db – the itdb on which to operate.
key – value of key for which to retrieve information.

Return Value: Null-terminated copy of the data. The caller is responsible for deleting this
string.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 168
LA-UR – 99-2579

10.3.14 ITDB_GetCurrentField
Signature: char* ITDB_GetCurrentField(ITDB* db, int key, int field)

Description: Returns the specific field for the current iteration for key.

Argument: db – the itdb on which to operate.
key – value of key for which to retrieve information.
field – field to retrieve.

Return Value: String containing specified field.

10.3.15 ITDB_GetField
Signature: char* ITDB_GetField(ITDB* db, int key, int field,

int it)

Description: Returns the specified field for the specified iteration for key.

Argument: db – the itdb on which to operate.
key – key for which to retrieve information.
field – field to retrieve.
it – iteration from which to retrieve information

Return Value: String containing specified field.

10.3.16 ITDB_GetFirstField
Signature: char* ITDB_GetFirstField(ITDB* db, int key, int field,

int it)

Description: Returns the specified field for the earliest iteration that has data.

Argument: db – the itdb on which to operate.
key – key for which to retrieve information.
field – field to retrieve.
it – iteration from which to retrieve information.

Return Value: String containing specified field.

10.3.17 ITDB_GetLastField
Signature: char* ITDB_GetLastField(ITDB* db, int key, int field,

int it)

Description: Returns the specified field for the latest iteration that has data.

Argument: db – the itdb on which to operate.
key – key for which to retrieve information.
field – field to retrieve.
it – iteration from which to retrieve information.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 169
LA-UR – 99-2579

Return Value: String containing specified field.

10.3.18 ITDB_FieldNameToNumber
Signature: int ITDB_FieldNameToNumber(ITDB* db, char* name)

Description: Converts between field name and field number.

Argument: db – the itdb on which to operate.
name – name to look up.

Return Value: Number of the given field, or –1 if it was not found.

10.3.19 ITDB_FieldNumberToName
Signature: char* ITDB_FieldNumberToName(ITDB* db, int num)

Description: Converts between field number and field name.

Argument: db – the itdb on which to operate.
num – number to look up.

Return Value: String containing the field name, or NULL if it was not found.

10.3.20 ITDB_ItCreate
Signature: ITDB_It* ITDB_ItCreate(ITDB* db, int iteration)

Description: Creates an iterator for the records of the given iteration.

Argument: db – database over which to iterate.
iteration – the number of the iteration over which to iterate. If

iteration is –1, then do all iterations.

Return Value: An iterator set to the first record of the proper iteration.

10.3.21 ITDB_ItCreateRecord
Signature: ITDB_It* ITDB_ItCreateRecord(ITDB* db, int key)

Description: Creates an iterator for all iterations of the given record.

Argument: db – database over which to iterate.
key – value of the key for which to return records.

Return Value: An iterator set to the first record of the proper iteration.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 170
LA-UR – 99-2579

10.3.22 ITDB_ItDestroy
Signature: void ITDB_ItDestroy(ITDB_It* it)

Description: Destroys an iterator and frees all resources.

Argument: it – the iterator to destroy

Return Value: None.

10.3.23 ITDB_ItReset
Signature: void ITDB_ItReset(ITDB_It* it)

Description: Resets iterator to beginning.

Argument: it – the iteration on which to operate.

Return Value: None.

10.3.24 ITDB_ItAdvance
Signature: void ITDB_ItAdvance(ITDB_It* it)

Description: Advances to the next record.

Argument: it – iteration which to operate.

Return Value: None.

10.3.25 ITDB_ItMoreData
Signature: int ITDB_ItMoreData(ITDB_It* it)

Description: Is there more data?

Argument: it – the iteration on which to operate.

Return Value: 0 if there is no more data.
non-zero if there is more data.

10.3.26 ITDB_ItGetString
Signature: char* ITDB_ItGetString(ITDB_It* it)

Description: Returns the current record.

Argument: it – the iteration on which to operate.

Return Value: A null-terminated string containing a copy of the record. The caller is
responsible for freeing this data.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 171
LA-UR – 99-2579

10.3.27 ITDB_ItGetData
Signature: char* ITDB_ItGetData(ITDB_It* it)

Description: Returns the current record.

Argument: it – the iteration on which to operate.

Return Value: A pointer into the mmapped file. Changes to the string will change the
actual file. This pointer should not be freed.

10.3.28 ITDB_StringToArray
Signature: char** ITDB_StringToArray(char* str)

Description: Converts a single string containing multiple fields to an array of strings
containing single records.

Argument: str – a string containing comma-separated fields.

Return Value: An array of strings, one field per string. The last element of the array is
NULL. The caller is responsible for freeing the returned pointer.

10.3.29 ITDB_ArrayToString
Signature: char* ITDB_ArrayToString(char** array)

Description: Convert an array of fields to a single string.

Argument: array – an array of strings containing fields. The last element of the array
must be set to NULL.

Return Value: A single string containing the comma-separated fields.

10.4 Data Structures

10.4.1 ITDB

This structure contains all of the information about an iteration database.

typedef struct itdb_s
{
/** The current iteration number. **/
int iteration;

/** Used to construct the itdb filename. **/
char* base_filename;

/** Name of the current iteration file; base.#.it. **/
char* idx_filename;

/** File descriptor for current iteration file. **/

TRANSIMS-LANL-1.0 – Files – May 1999 Page 172
LA-UR – 99-2579

int it_fd;

/** Array of labels for the fields of the database. **/
char* field_labels;

/** The number of fields. **/
int num_fields;

/** End of the current iteration file. **/
size_t it_pos;

/** Index of all iteration files. **/
BTree* index;
} ITDB;

10.4.2 ITDB_It

This structure is an iterator into an iteration database.

typedef struct itdbit_s
{
/** The index for this iterator. **/
BTree* index;

/** The index iterator. **/
BTreeIt* index_it;

/** The iteration to iterate through. –1 means all iterations. **/
int iteration;

/** Iterate through one record only. –1 means all records. **/
int key;

} ITDB_It;

10.5 Utility Programs

10.5.1 ITDB_TEST

This utility tests ITDB functions.

10.6 Files

Table 96: Iteration database library files.

Type File Name Description
Binary Files libitdb.a TRANSIMS interfaces library
Source Files itdb.h Defines iteration database data structures and interface

functions
itdb.c Iteration database interface functions source file

TRANSIMS-LANL-1.0 – Files – May 1999 Page 173
LA-UR – 99-2579

11. INDEXING

TRANSIMS data files (particularly the activity, plan, output, and iteration database files) may be
very large. Furthermore, the following common operations on these files must be efficient:
• modify small, randomly scattered records
• merge modifications back into the original file
• sort on several different keys
• retrieve specified records

File indexing provides a mechanism for efficient use of these large files.

TRANSIMS provides a C library that supports accessing files through an associated index. It also
incorporates a particular strategy for using this library within the TRANSIMS framework. This
section describes the indexes, library routines, and the way they are used within TRANSIMS.

11.1 Terms

index entry An index entry (the structure BTreeEntry defined in btree.h) contains a pointer
to a disk file, a byte offset into the file, and the value of a major and minor key
associated with the data record to be found at the given offset in the given file.

index An index (the structure BTree defined in btree.h) is a sorted set of entries together
with a list of file names referred to by the entries. It is stored on disk and read into
memory for use.

index file File containing a sorted index of one or more data files.

iterator An iterator (the structure BTreeIt defined in btree_it.h) is, in effect, a pointer to
an index entry. It is used to iterate through an index in a fixed order.

notional file The file that would result if the data records referred to by all of the entries in an
index were gathered into a single file.

11.2 Usage

An index must be created for each file to be accessed by index. Creating an index involves reading
each data record in the file, determining the values of the fields to be used as keys, noting the byte
offset for the beginning of that record, and inserting an entry into the index (BTree). Each index is
given a name derived by adding an extension to the base data file. The extension indicates the
major sort key for the index and that the file is an index. For example, .trv.idx indicates that the
file is an index whose major sort key is traveler ID. These extensions are defined in the IO library
header files.

Indexes are sorted according to the fields used for the major and minor sort keys. If a data file
must be accessed in a particular order, for example by traveler ID, it is more efficient to build an
index with that field as the major sort key than to create another data file that has been sorted.
Thus, the framework will often expect several different indexes for each data file.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 174
LA-UR – 99-2579

TRANSIMS provides C library routines for creating the indexes used by the framework, as well as
standalone utility programs. Given the name of a data file to index, these routines first determine
whether the required index files already exist, with a modification date more recent than that of the
data file. If so, nothing is done. Where possible, these routines also create an index by examining
other available indexes instead of scanning the entire data file. For example, there are two indexes
for plan files; one has traveler ID as a major sort key and departure time as the minor key; the
other has the sort keys reversed. Thus, one index can be created from the other without looking at
the original data.

The user has access to functions used to compare keys. The current functions compare the
primary sort key first. If these are equal, they compare the secondary sort keys. It is possible to
specify a don’t care value for the secondary sort key, which will compare equal to any secondary
sort key value.

Indexes may be merged. In this case, entries appearing later in the set of indexes replace earlier
entries. None of the data in the original data files needs to be moved to merge the indexes, yet
iterating through the merged index will yield the same results as if the data files themselves had
been merged and sorted.

Similarly, removing entries from an index makes the corresponding data invisible to users
accessing the data file through the index.

After several merge, sort, and filter operations, it becomes difficult to determine the contents of the
resulting “notional” file except by using the indexing scheme. To support users who may wish to
use other data processing tools, TRANSIMS provides the ability to defragment the data pointed to
by an index. That is, it provides executables that will create a new file on disk identical to the
notional file.

Table 97: Indexes used by TRANSIMS components.

Data File Type Extension Major, Minor Sort
Keys

Creator(s) User(s)

Activity file .hh.idx Household ID,
Person ID

IndexActivityFile Route Planner,
Iteration Database

Plan file .trv.idx Traveler ID,
Activation Time

Route Planner,
IndexPlanFile

Traffic Microsimulator,
Iteration Database

Plan file .tim.idx Activation Time,
Traveler ID

PlanFilter,
IndexPlanFile

Traffic Microsimulator

Event Output .trv.idx Traveler ID,
Trip ID

Iteration Database Iteration Database

Event Output .loc.idx Location ID,
Traveler ID

Iteration Database Iteration Database

Vehicle file .veh.idx Vehicle ID, Household ID Population Synthesizer,
IndexVehicle File

Route Planner,
Traffic Microsimulator

TRANSIMS-LANL-1.0 – Files – May 1999 Page 175
LA-UR – 99-2579

11.3 Interface Functions

11.3.1 BTree_Create
Signature: void BTree_Create(BTree* tree, const char* data_file,

const char* index_file)

Description: Creates a new index; does not add any entries to the index file.

Argument: tree – tree to create; assumes tree is a valid pointer.
date_file – name of file where the data resides.
index_file – name of index file to create.

Return Value: None.

11.3.2 BTree_Open
Signature: void BTree_Open(BTree* tree, const char* index_file)

Description: Opens an existing btree index file.

Argument: tree – tree to open; assumes tree is a valid pointer.
index_file – name of index file to open.

Return Value: None.

11.3.3 BTree_Close
Signature: void BTree_Close(BTree* tree)

Description: Closes a btree and releases resources.

Argument: tree – tree to close; the pointer is not freed.

Return Value: None.

11.3.4 BTree_CreateFrom File
Signature: BTree* BTree_CreateFromFile(const char* data_file, const

char* index_file, enum act_keys key1, enum act_keys key2)

Description: Creates a btree from a given data file.

Argument: data_file – datafile from which to read entries.
index_file – index file to which entries will be added.
key1 – field number of primary key.
key2 – field number of secondary key.

Return Value: A new index containing the entries from the data file.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 176
LA-UR – 99-2579

11.3.5 BTree_AddFileToIndex
Signature: void BTree_AddFileToIndex(BTree* tree, char* data_file)

Description: Adds entries in file to tree.

Argument: tree – tree to which entries will be added.
data_file – data file from which to take entries.

Return Value: None.

11.3.6 BTree_Insert
Signature: void BTree_Insert(BTree* tree, BTreeEntry* entry)

Description: Inserts an entry into a btree.

Argument: tree – index to which entries will be added.
entry – the entry to add.

Return Value: None.

11.3.7 BTree_AddFilename
Signature: int BTree_AddFilename(BTree* tree, char* filename)

Description: Adds an additional data filename.

Argument: tree – tree to which filename will be added.
filename – date file to add.

Return Value: The file number of the added filename.

11.3.8 BTree_GetFilename
Signature: char* BTree_GetFilename(BTree* tree, int i)

Description: Converts from file number in a BTreeEntry to file name.

Argument: tree – tree in which to do the lookup.
i– file number to look up.

Return Value: The filename of the corresponding data file, or NULL if there is no such data
file.

11.3.9 BTree_GetFileNumber
Signature: int BTree_GetFileNumber(BTree* tree, const char*

filename)

Description: Converts from file name to file number.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 177
LA-UR – 99-2579

Argument: tree – tree in which to do the lookup.
filename – data file name to look up.

Return Value: The filenumber of the corresponding data file, or –1 if there is no such data
file.

11.3.10 BTree_ClearFilename
Signature: void BTree_ClearFilename(BTree* tree)

Description: Removes all filenames.

Argument: tree – tree from which to remove filenames.

Return Value: None.

11.3.11 BTree_RenumberFiles
Signature: void BTree_RenumberedFiles(BTree* tree, int dest,

int src)

Description: Renumbers filenumber in entries of a tree.

Argument: tree – tree in which to do the renumbering.
dest – the new file number.
src – the old file number, if –1 renumber all entries.

Return Value: None.

11.3.12 BTree_GetDataPointer
Signature: char* BTree_GetDataPointer(BTree* tree, BTreeEntry* e)

Description: Gets entry in the data file for entry.

Argument: tree – tree in which to do lookup.
e – entry for which to find data.

Return Value: A pointer into the mmaped file, or NULL if the data is not found.
The pointer is not null-terminating (‘\0’). Any changes made through this
pointer will be reflected in the data file. This pointer should not be freed.

11.3.13 BTree_GetDataLine
Signature: char* BTree_GetDataLine(BTree* tree, BTreeEntry* e)

Description: Gets entry in the data file for entry.

Argument: tree – tree in which to do lookup.
e – entry for which to find data.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 178
LA-UR – 99-2579

Return Value: A copy of the data, or NULL if the data is not found.
The pointer is null-terminated (‘\0’). Any changes made through this pointer
will not be reflected in the data file. The caller is responsible for freeing this
pointer.

11.3.14 BTree_FindEntry
Signature: BTreeEntry* BTree_FindEntry(BTree* tree, BTreeEntry* e)

Description: Finds an entry in a tree.

Argument: tree – the tree in which to do the search.
e – entry to find, only needs keys to be set up correctly.

Return Value: The complete entry in the tree, or NULL if the entry was not found.

11.3.15 BTree_Validate
Signature: void BTree_Validate(BTree* tree, const char* from)

Description: Validates a tree. Currently, checks for the following:
- Proper order of elements in tree
- Correct number of entries
- Stuff in valid subtree
 - valid key types
 - valid file number
 - valid child pointers

Argument: tree – tree to validate.
from – where called from, used to print message (only if problem found).

Return Value: None.

11.3.16 BTreeDeleteEntry
Signature: void BTree_DeleteEntry(BTree* tree, BTreeEntry* e)

Description: Deletes an index entry in a tree. Does not modify any data files.

Argument: tree – tree from which to delete.
e – entry to delete.

Return Value: None.

11.3.17 BTreeIt_Create
Signature: BTreeIt* BTreeIt_Create(BTree* tree)

Description: Creates an iterator to a tree.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 179
LA-UR – 99-2579

Argument: tree – the tree into which to point.

Return Value: An iterator into the tree. This iterator should be destroyed with
BTreeIt_Destroy() to free all resources. This iterator is invalid if the

tree is modified.

11.3.18 BTreeIt-Reset
Signature: void BTreeIt_Reset(BTreeIt* it)

Description: Resets an iterator to point to the first entry of the tree.

Argument: it – the iterator to reset.

Return Value: None.

11.3.19 BTreeIt_Advance
Signature: void BTreeIt_Advance(BTreeIt* it)

Description: Advances the iterator to the next entry in the tree.

Argument: it – the iterator to advance.

Return Value: None.

11.3.20 BTreeIt_MoreData
Signature: int BTreeIt_MoreData(BTreeIt* it)

Description: Are we at the end of the index?

Argument: it – the iterator to check.

Return Value: 0 if there are no more entries; non-zero if there are more entries.

11.3.21 BTreeIt_Get
Signature: BTreeEntry* BTreeIt_Get(BTreeIt* it)

Description: Gets the entry to which the iterator points.

Argument: it – the iterator to query.

Return Value: A pointer to the current entry in the tree, or NULL if the iterator is invalid.
The entry should not be modified or freed.

11.3.22 BTreeIt_Destroy
Signature: void BTreeIt_Destroy(BTreeIt* it)

TRANSIMS-LANL-1.0 – Files – May 1999 Page 180
LA-UR – 99-2579

Description: Destroys an iterator and frees all resources.

Argument: it – the iterator to destroy.

Return Value: None.

11.3.23 BTreeIt_GetIterator
Signature: BTreeIt* BTreeIt_GetIterator(BTree* tree, BTreeEntry* e)

Description: Returns an iterator pointing to an entry in the tree.

Argument: tree – tree in which to find the iterator.
e – entry to set the iterator to, only needs keys to be set up correctly.

Return Value: An iterator that points to e; or NULL if e was not found.

11.3.24 BTreeIt_Compare_Equal
Signature: int BTreeIt_Compare_Equal(BTreeIt* i1, BTreeIt* i2)

Description: Compares two iterators.

Argument: i1, i2 – iterators to compare.

Return Value: 0 if the iterators do not point to the same entry in the tree; non-zero if they do
pint to the same entry.

11.4 Data Structures

11.4.1 Key

This structure is used to represent the value of a key.

typedef union u_key
{
/** A key can be either an integer or a floating point number. **/
int I;
float f;

} Key;

11.4.2 BTreeEntry

This structure is used as an index entry; it holds two keys— the file number and offset where the
data resides.

typedef struct btree_entry_s
{
/** Primary Key. **/
Key key1;

TRANSIMS-LANL-1.0 – Files – May 1999 Page 181
LA-UR – 99-2579

/** Secondary Key. **/
Key key2;

/** Number of bytes from beginning of file. **/
off_t offset;

/** Number of data file. **/
short file;

/** Key data types. **/
char key_type;

/** Unused. **/
char pad;

} BTreeEntry

11.4.3 BTreeNode

This structure is used as the node of a btree; it holds up to BTREE_ORDER entries and
BTREE_order+1 children.

typedef struct btree_node_s
{
/** Number of keys currently in this node. **/
int keys;

/** Is this a leaf node? **/
int leaf;

/** Data to be stored. **/
struct btree_entry key [BTREE_ORDER];

/** Child pointers. **/
off_t child[BTREE_ORDER+1];

/** Padding to make node even multiple of page size. **/
char pad[20];

} BTreeNode

11.4.4 BTree

This structure contains information about a btree. It is sized so that it takes up the first page of the
btree index file (BTREE_PAGESIZE bytes). One btree can have up to 255 data files, with a
combined filename length of 5596 bytes.

typedef struct btree_s
{
/** Index of Root of tree. **/
off_t root;

/** Index file. **/
int index_fd;

/** Start of node array. **/

TRANSIMS-LANL-1.0 – Files – May 1999 Page 182
LA-UR – 99-2579

struct btree_node* index;

/** Number of nodes used. **/
size_t size;
/** Number of nodes allocated. **/
size_t allocated;

/** Number of entries in the tree. **/
size_t entries;

/** Height of the tree. **/
size_t height;

/** Field number of key1. **/
short key1;

/** Field number of key2. **/
short key2;

/** Order of this btree, used as sanity check. **/
short order;

/** Number of data files. **/
char num_filenames;

/** Version of btree file, used as sanity check. **/
char version;

/** File Descriptors for data files. **/
int data fd[256];

/** Pointers to mmaped files. **/
char* data[256];

/** Offset in filename array of filenames. **/
short filename_off[256];

/** Names of index files. **/
char filename[5596];

} BTree;

11.4.5 BtreeIt

This structure holds a pointer into a btree index.

typedef struct btree_it
{
/** Tree into which this iterator points. **/
BTree* tree;

/** Height of the tree. **/
int height;

/** Level in the tree of the iterator. **/
int level;

/** Path from root of tree to current position. **/
off_t* node;

TRANSIMS-LANL-1.0 – Files – May 1999 Page 183
LA-UR – 99-2579

/** Current key number at each level in path. **/
size_t* key;

} BTreeIt;

11.5 Utility Programs

11.5.1 IndexFilenames

The purpose of this tool is to allow easy inspection and reassignment of the data file names referred
to by an index.

Each index file maintains a directory listing the names of the data files to which its entries refer,
and a default UNIX directory path which is prepended to any filenames which do not begin with
the character “/”. The directory entries themselves contain pointers into this list of filenames.
When a data file is moved, it is more efficient to update the list of filenames than to recreate the
index.

This tool can be invoked in either “write” or “read” mode. In write mode, it simply prints the
default directory and file names, one per line, into a file. In read mode, it reads the default
directory and file names from a file and overwrites the current settings in the index file.

Usage: IndexFilenames <index> <command> <file>

Where <index> is the index file to read or modify, <command> is “w” to write the names of the
data files to <file> or “r” to read the names of the data files from <file>. The first line of
<file> is the default directory, which will be prepended to any data file name that does not begin
with a “/” or “.”. For example, to change the name of location of the datafiles for the local
activities household index, the following commands would be needed:

IndexFilenames local.act.hh.idx w names
vi names # edit names of data files
IndexFilename local.act.hh.idx r names

Example:

This example shows how to update the index plans.tim.idx if the data files it refers to are moved
from /tmp to /home/eubank.

gershwin 1> $TRANSIMS_HOME/bin/IndexFilenames plans.tim.idx w names
gershwin 2> cat names
/tmp
plans.1
plans.2
gershwin 3> cat > newnames
/home/eubank
plans.1
plans.2
gershwin 4> $TRANSIMS_HOME/bin/IndexFilenames plans.tim.idx r newnames

Troubleshooting:

TRANSIMS-LANL-1.0 – Files – May 1999 Page 184
LA-UR – 99-2579

It is an error to reduce the number of filenames held in an index’s directory, since some entries will
no longer point to a valid file name. It is not an error to have duplicate file names, although it may
cause inefficient memory use when the index is used.

11.5.2 IndexActivityFile, IndexPlanFile, IndexVehFile

Create appropriate indices for activity files, route plans, and TRANSIMS vehicle files. These
programs are described in Section 4.5.

11.5.3 MergeIndices

The purpose of the MergeIndices tool is to merge and update potentially large data files without
touching all the data on disk. For example, a 100 Megabyte plan file can be merged with another
100 Megabyte plan file and the result sorted by both departure time and traveler ID simply by
merging and sorting the indexes for each file properly.

For each input index specified on the command line, copy the desired entries from that index into
an output index. Only those entries whose primary key has not been seen in a previously processed
index are desired. The input indexes are processed from last to first, so this restriction essentially
means that entries from indexes specified later on the command line overwrite those specified
earlier on the command line.

Usage:

MergeIndices <output-name> <index1> [<index2> [<index3> ...]]

Example:

The following command will merge the indexes for transit driver plans stored in the file
plans.transit, plans from the first iteration of the Router stored in plans.pop.1, and plans from the
second iteration of the Router stored in plans.pop.2:

MergeIndices out.trv.idx plans.transit.trv.idx plans.pop.1.trv.idx plans.pop.2.trv.idx

The output index will be out.trv.idx. Assuming all the transit driver IDs are distinct from other
members of the population, out.trv.idx will contain all of the transit driver plans, all of the plans
from plans.pop.2, and plans for all of the travelers in plans.pop.1 who did not appear in
plans.pop.2.

The resulting index can be used to create an index sorted by time using the IndexPlanFile tool.
These indexes can be used directly by the Traffic Microsimulator (or distributed using the
DistributePlans tool, or viewed using the PlanFilter tool) without the need to create an actual file
out containing all the data for the plan legs. If desired, such a file could be created using the -d
option of the PlanFilter tool.

Troubleshooting:

Only the primary key is used to distinguish entries. Thus, MergeIndices works well for plans
indexed by traveler ID, but not for plans indexed by departure time. Similarly, if the household ID
is used as a key, all travelers in a household should be updated at once.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 185
LA-UR – 99-2579

11.5.4 IndexDefrag

Defragment and merge the datafiles for an index. The entries in an index are written to a new
datafile in the order that they appear in the index. The index is modified to use the new data file.
For example, if vehicles.hh.idx refers to vehicles1, and vehicles2, then the command

IndexDefrag vehicles.hh.idx vehicles.new

will create a new datafile, with the entries from vehicles1 and vehicles2 that occur in
vehicles.hh.idx. The index file vehicles.hh.idx will now refer only to file vehicles.new.

11.6 Files

Table 98: Indexing library files.

Type File Name Description
Binary Files libTIO.a TRANSIMS Interfaces library
Source Files btree.h Defines Btree and BTreeEntry data structures and interface

functions
btree.c Btree.h interface functions source file
btree_it.h Defines BtreeIt data structure and interface functions
btree_it.c btree_it.h interface functions source file

11.7 Examples
#include "IO/btree.h"
#include "IO/btree_it.h"

int main(int argc, char* argv[])
{
 char* data_file;
 char* index_file;
 BTreeEntry entry;
 BTree* tree;
 BTreeIt *it;

 index_file = "sample0.idx";
 data_file = "sample1.dat";

 /* Create an index file */
 tree = BTree_CreateFromFile(data_file,
 index_file,
 kActivityPerson,
 kActivityStartMin);

 /* Add a second data file to the index */
 data_file = "sample2.dat";
 BTree_AddFileToIndex(tree, data_file);

 /* Delete an entry */
 entry.key1.i = 0;
 entry.key2.f = 0.0;
 entry.key_type = K_IF;
 BTree_DeleteEntry(tree, &entry);

 /* Use an iterator to examine each entry */

TRANSIMS-LANL-1.0 – Files – May 1999 Page 186
LA-UR – 99-2579

 it = BTreeIt_Create(tree);
 BTreeIt_Reset(it);
 while (BTreeIt_MoreData(it))
 {
 BTreeEntry* e;
 BTreeEntry* e2;
 BTreeIt* it2;
 /* Get the entry for this iterator */
 e = BTreeIt_Get(it);

 /* Get a second iterator, pointing to the same entry */
 it2 = BTreeIt_GetIterator(tree, e);
 /* Get the entry for this iterator */
 e2 = BTreeIt_Get(it2);
 /* Verify that the entries are the same (they should be) */
 if (!BTree_Compare_Equal(e, e2) || !BTreeIt_Compare_Equal(it, it2))
 {
 if (!BTree_Compare_Equal(e, e2))
 printf("Entries differ\n");
 if (!BTreeIt_Compare_Equal(it, it2))
 printf("Iterators differ\n ");
 }
 /* Clean up the second iterator */
 BTreeIt_Destroy(it2);

 /* Advance to the next entry */
 BTreeIt_Advance(it);
 }
 BTreeIt_Destroy(it);

 BTree_Close(tree);
 free(tree);
 return 0;
}

TRANSIMS-LANL-1.0 – Files – May 1999 Page 187
LA-UR – 99-2579

12. VISUALIZATION

This section describes the file formats used as input into the Output Visualizer.

12.1 Terms

Variable Size Box Format A box of any size and location on a given link is described by this
format.

Constant Size Box Format Data for each box of a given fixed size is described by this format.

Vehicle Evolution Format Data on vehicle position, type, passengers, and velocity is described
by this format.

12.2 File Format

12.2.1 Variable Size Box Format

Fields in the variable size box format are tab-delimited.

Each line of the variable size box format contains at least six mandatory fields:
1) TIME
2) Link ID
3) Node ID
4) Distance – the distance where the described box ends from the beginning of the link.
5) Length – the total length of the box being described.
6) Data value

Additionally, one may add up to nine more data value columns. It is suggested that one provide a
labeling line on the first line of the file describing each column as shown below.

TIME LINK NODE DISTANCE LENGTH DataVal1 DataVal2 DataVal3 DataVal4...

Format:
<TIME> <Link ID> <Node ID> <Distance> <Length> <Data Value 1> [<Data Value 2> ... <Data Value 10>]

Example:

TIME LINK NODE DISTANCE LENGTH DataVal1 DataVal2 DataVal3

800 1400 1256 24.75 12.50 10.0 20.4 35.6

At time 800 of the simulation, a box should be drawn of length 12.5 that ends 24.75 meters from
node 1256 of link 1400. The data values for each of the first three columns are 10.0, 20.4, and
35.6 respectively.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 188
LA-UR – 99-2579

12.2.2 Constant Size Box Format

The Constant Size Box Format (Table 99) is a binary file format and consists of the following
fields in the given order.

Table 99: Constant Size Box Format data structure fields.

Field Description Allowed Values
Time Current simulation time for which this data has been collected. Integer (32 bits)
Count Number of vehicles that have passed through during the sampling time. Integer (32 bits)
Link Link id for the current box. Integer (32 bits)
Sum Sum of all velocities for vehicles passing through this box during the

sampling time.
Decimal (32 bits)

The constant size box format file should be sorted by the time field.

12.2.3 Vehicle Evolution Format

The Vehicle Evolution Format (Table 100) is a binary file format consisting of a single data
structure type shown below.

Table 100: Vehicle Evolution Format data structure fields.

Field Description Allowed Values
Status Vehicle type number in the lower 8 bits, and the number of passengers

in the upper 8 bits.
Integer (16 bits)

Theta Number of degrees from due east the vehicle is pointed. The angle is
calculated counterclockwise from due east.

Integer (16 bits)

Time Current simulation time for which this current record has been
collected.

Integer (32 bits)

Velocity Current velocity of the vehicle. Decimal (32 bits)
X Current x position of the front middle of the vehicle. Decimal (32 bits)
Y Current y position of the front middle of the vehicle. Decimal (32 bits)
Z Current z position of the front middle of the vehicle. Decimal (32 bits)
Vehicle ID Vehicle ID. Integer (32 bits)
Link ID Current link ID on which the vehicle is traveling. Integer (32 bit)

The vehicle evolution file should be sorted by time.

12.3 Utility Programs

12.3.1 vehtobin

The vehtobin program converts IOC-2 text format to the binary format required by the Output
Visualizer. Usage is as follows:

vehtobin inputfilename outputfilename

TRANSIMS-LANL-1.0 – Files – May 1999 Page 189
LA-UR – 99-2579

12.4 Files

Table 101: Visualization library files.

Type File Name Description
Binary Files libTIO.a TRANSIMS Interfaces library
Vehtobin
Source Files

vehtobin.h Defines data structures and interface functions to convert IOC-2 text data
files into binary vehicle evolution files for use with the Output Visualizer.

vehtobin.c Main function to convert IOC-2 text data files into binary vehicle evolution
files for use with the Output Visualizer.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 190
LA-UR – 99-2579

13. CONFIGURATION

This section describes the format of configuration files. These files contain the parameters used by
the various TRANSIMS software modules.

13.1 Terms

key Character string (containing no spaces) representing a configuration parameter.

value Number or character string.

13.2 File Format

Configuration files are text files that contain lines of the following types:

• A key followed (optionally) by a value and (optionally) by a comment starting with the pound
(#) symbol. The key and the value must be separated by space and/or tab characters.

• A comment line staring with the pound symbol (#).

• A blank line.

13.3 Interface Functions

Functions are available for reading and writing records of a configuration file.

13.3.1 ConfigRead
Signature: int ConfigRead(FILE* file, TConfigRecord* record)

Description: Read a record from a configuration file.

Argument: file – FILE pointer for the configuration file.
record – pointer to TConfigRecord structure into which the record is

read.

Return Value: Nonzero if the record was successfully read, or zero if not.

13.3.2 ConfigWrite
Signature: int ConfigWrite(FILE* file, const TConfigRecord* record)

Description: Write a record to a configuration file.

Argument: file – FILE pointer for the configuration file.
record – pointer to TConfigRecord structure from which the record is
 written.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 191
LA-UR – 99-2579

Return Value: Nonzero if the record was successfully written, or zero if not.

13.4 Data Structures

13.4.1 TConfigRecord Structure

Structure for configuration file records.

typedef struct
{
/** The key, if the record has one. **/
INT8 fKey[64];

/** The value, if the record has one. **/
INT8 fValue[256];

/** The comment, if the record has one. **/
INT8 fComment[512];

} TConfigRecord;

13.5 Utility Programs

13.5.1 SetEnv

The SetEnv program takes the keys in a configuration file and converts them into UNIX shell
environment variables set to the values corresponding to the keys. Its first argument is the name of
the UNIX shell and its second argument is the name of the configuration file; it does not recurse
nested configuration files. It is typically used as follows:

eval `SetEnv csh default.config`
eval `SetEnv csh my-run.config`

where default.config is the default configuration file identified in the configuration file my-
run.config.

13.6 Files

Table 102: Configuration library files.

Type File Name Description
Binary Files libTIO.a TRANSIMS Interfaces library
Utilities SetEnv Environment variable setting utilities
Source Files configio.h Defines configuration file data structures

and interface functions
configio.c Configuration file interface functions source

file

TRANSIMS-LANL-1.0 – Files – May 1999 Page 192
LA-UR – 99-2579

13.7 Configuration Keys

The configuration key CONFIG_DEFAULT_FILE specifies the name of a configuration file
whose keys and values are to be used in cases where a key is not set in the current configuration
file.

13.8 Examples

Figure 20 and Figure 21 give examples of typical configuration and default configuration files,
respectively. Note that when keys are duplicated in these files, the value in the non-default file
takes precedence.

Figure 20: Example configuration file.

CONFIG_DEFAULT_FILE /home/transims/allstr-run/default.config

NET_PROCESS_LINK_TABLE Process_Link.minimal.tbl

ROUTER_MAX_DEGREE 15

CA_BIN /home/projects/transims/config/integration/bin/ARCH.PVM.SUN4SOL2/CA
CA_SIM_STEPS 7200
CA_MASTER_MESSAGE_LEVEL 1

PAR_COMMUNICATION PVM
PAR_SLAVES 1

Figure 21: Example default configuration file.

##################### GLOBAL PARAMETERS #####################

The width of a lane in meters
float
GBL_LANE_WIDTH 3.5

The length of a cell in meters
float
GBL_CELL_LENGTH 7.5

##################### NETWORK PARAMETERS ####################

NET_DIRECTORY /home/transims/allstr-run/network/

NET_NODE_TABLE Node.tbl
NET_LINK_TABLE Link.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.tbl
NET_LANE_USE_TABLE Lane_Use.tbl
NET_SPEED_TABLE Speed.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.tbl
NET_TURN_PROHIBITION_TABLE Turn_Prohibition.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.tbl
NET_TIMING_PLAN_TABLE Timing_Plan.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.tbl
NET_DETECTOR_TABLE Detector.tbl

TRANSIMS-LANL-1.0 – Files – May 1999 Page 193
LA-UR – 99-2579

NET_BARRIER_TABLE Barrier.tbl
NET_PARKING_TABLE Parking.tbl
NET_TRANSIT_STOP_TABLE Transit_Stop.tbl
NET_ACTIVITY_LOCATION_TABLE Activity_Location.tbl
NET_PROCESS_LINK_TABLE Process_Link.tbl
NET_STUDY_AREA_LINKS_TABLE Study_Area_Link.tbl

##################### SYNTHETIC POPULATION PARAMETERS ####################

POP_NUMBER_HH 1000
POP_BASELINE_FILE /home/transims/allstr-run/output/allstr.basepop
POP_LOCATED_FILE /home/transims/allstr-run/output/allstr.locpop
POP_STARTING_VEHICLE_ID 100000
POP_STARTING_HH_ID 1
POP_STARTING_PERSON_ID 101

##################### ACTIVITY GENERATOR PARAMETERS ####################

ACT_FULL_OUTPUT /home/transims/allstr-run/output/allstr.activities
ACT_PARTIAL_OUTPUT /home/transims/allstr-run/output/allstr.partact
ACT_FEEDBACK_FILE /home/transims/allstr-run/output/allstr.actfeed
ACT_WORK_LOC_ALPHA 1
ACT_WORK_LOC_BETA 1
ACT_WORK_LOC_GAMMA 1
ACT_TIME_ALPHA 1
ACT_TIME_BETA 1
ACT_MODE_ALPHA 1
ACT_MODE_BETA 1
ACT_WORK_LOCATION_OPTION 1
ACT_MODE_CHOICE_OPTION 4
ACT_HOME_HEADER HOME
ACT_WORK_HEADER WORK
ACT_ACCESS_HEADER ACCESS

##################### OUTPUT PARAMETERS #####################

OUT_DIRECTORY /home/transims/allstr-run/output

OUT_SNAPSHOT_NAME_1 allstr.snapshot
OUT_SNAPSHOT_BEGIN_TIME_1 0
OUT_SNAPSHOT_END_TIME_1 86400
OUT_SNAPSHOT_TIME_STEP_1 1
OUT_SNAPSHOT_EASTING_MIN_1 1
OUT_SNAPSHOT_EASTING_MAX_1 1000000
OUT_SNAPSHOT_NORTHING_MIN_1 1
OUT_SNAPSHOT_NORTHING_MAX_1 1000000
OUT_SNAPSHOT_NODES_1 /home/transims/allstr-run/data/allstr.nodes
OUT_SNAPSHOT_LINKS_1 /home/transims/allstr-run/data/allstr.links
OUT_SNAPSHOT_SUPPRESS_1
OUT_SNAPSHOT_FILTER_1

OUT_EVENT_NAME_1 allstr.event
OUT_EVENT_BEGIN_TIME_1 0
OUT_EVENT_END_TIME_1 86400
OUT_EVENT_TIME_STEP_1 1
OUT_EVENT_EASTING_MIN_1 1
OUT_EVENT_EASTING_MAX_1 1000000
OUT_EVENT_NORTHING_MIN_1 1
OUT_EVENT_NORTHING_MAX_1 1000000
OUT_EVENT_NODES_1 /home/transims/allstr-run/data/allstr.nodes
OUT_EVENT_LINKS_1 /home/transims/allstr-run/data/allstr.links
OUT_EVENT_SUPPRESS_1
OUT_EVENT_FILTER_1

OUT_SUMMARY_NAME_1 allstr.summary
OUT_SUMMARY_BEGIN_TIME_1 0
OUT_SUMMARY_END_TIME_1 86400
OUT_SUMMARY_TIME_STEP_1 900
OUT_SUMMARY_SAMPLE_TIME_1 60
OUT_SUMMARY_BOX_LENGTH_1 150
OUT_SUMMARY_EASTING_MIN_1 1
OUT_SUMMARY_EASTING_MAX_1 1000000

TRANSIMS-LANL-1.0 – Files – May 1999 Page 194
LA-UR – 99-2579

OUT_SUMMARY_NORTHING_MIN_1 1
OUT_SUMMARY_NORTHING_MAX_1 1000000
OUT_SUMMARY_NODES_1 /home/transims/allstr-run/data/allstr.nodes
OUT_SUMMARY_LINKS_1 /home/transims/allstr-run/data/allstr.links
OUT_SUMMARY_SUPPRESS_1
OUT_SUMMARY_FILTER_1

##################### SIMULATION PARAMETERS #################

see IO/log.h for possible levels
CA_SLAVE_MESSAGE_LEVEL 0
CA_MASTER_MESSAGE_LEVEL 0

name of executable (used by Msim.pl)
CA_BIN CA

the max number of occupants of a bus
int > 1
CA_BUS_CAPACITY 50

the number of cells a bus occupies in a jam
float > 0.0
CA_BUS_LENGTH 2.0

the acceleration of a car, bus, etc.
(in cells per timestep per timestep)
float > 0.0
CA_MAXIMUM_ACCELERATION 0.4
CA_BUS_MAXIMUM_ACCELERATION 0.1

the maximum speed of a car, bus, etc.
(in cells per timestep)
float > 0.0
CA_MAXIMUM_SPEED 4.5
CA_BUS_MAXIMUM_SPEED 2.5

If nonzero, no attempt will be made to read in transit vehicles
and transit passengers will not be simulated.
int(?)
CA_NO_TRANSIT 1

Some time after a vehicle becomes off plan, it will exit the simulation.
the probability that a vehicle with speed >= 1 will decelerate by 1
(also an increment added to the speed limit on a link)
in the discrete version (not compiled with -DCONTINUOUS)
float > 0 and < 1
CA_DECELERATION_PROBABILITY 0.2

use to compute the number of cells that must be vacant in an acceptable gap
(acceptable gap is speed of oncoming vehicle * Velocity Factor)
float (> 1.0 ?)
CA_GAP_VELOCITY_FACTOR 3.0

Probability of proceeding when interfering gap is not acceptable
in cases of links with competing stop/yield signs
float > 0 and < 1
CA_IGNORE_GAP_PROBABILITY 0.66

The number of vehicles which can be buffered in each
of an intersection’s queues (One queue for each lane of each incoming link)
int > 1
CA_INTERSECTION_CAPACITY 10

Vehicles take at least this many timesteps to traverse an intersection
int >= 0
CA_INTERSECTION_WAIT_TIME 1

Can’t change lanes if random variable drawn on each timestep for each vehicle
is less than this
float > 0 and < 1
CA_LANE_CHANGE_PROBABILITY 0.99

number of cells ahead to look for deciding which lane is best upon entering a link
int >= 0
CA_LOOK_AHEAD_CELLS 35

TRANSIMS-LANL-1.0 – Files – May 1999 Page 195
LA-UR – 99-2579

If vehicle has not moved for this many timesteps,
it becomes off-plan and chooses a different destination link, if possible.
int >= 0
CA_MAX_WAITING_SECONDS 600

The exit time is the minimum of the expected arrival time at the destination
and the current time + OFF_PLAN_EXIT_TIME
int >= 0
CA_OFF_PLAN_EXIT_TIME 1

Determines, in a complicated way, whether lane changes for the
sake of following a plan need to be considered
int >= 0
CA_PLAN_FOLLOWING_CELLS 70

specify start time for simulation
int
CA_SIM_START_HOUR 0
CA_SIM_START_MINUTE 0
CA_SIM_START_SECOND 0

number of timesteps to simulate
int >= 0
CA_SIM_STEPS 3600

send map of locations of all accessories to all slaves
CA_BROADCAST_ACC_CPN_MAP 0

migrate travelers by broadcasting them
CA_BROADCAST_TRAVELERS 1

number of time-steps to be executed before slaves synchronize with master
CA_SEQUENCE_LENGTH 1

Initialize the random seed
seed48 is called with a pointer to the first element of an array
of these 3 unsigned shorts
unsigned short
CA_RANDOM_SEED1 1
CA_RANDOM_SEED2 2
CA_RANDOM_SEED3 3

Use the cached binary representation of the network database
in the file specified by CA_NETWORK_FILE
int
CA_USE_NETWORK_CACHE 0
string
CA_NETWORK_FILE

The following delays model just the time it takes to walk up the steps or
through the doors or whatever. They have nothing to do with the
time spent waiting in the queue.

The mean number of seconds it takes a traveler to board a transit vehicle.
float >= 0.0
CA_ENTER_TRANSIT_DELAY 1.6

The mean number of seconds it takes to disembark.
float >= 0.0
CA_EXIT_TRANSIT_DELAY 1.8

The number of seconds after a vehicle reaches the stop before
passengers can start boarding
CA_TRANSIT_INITIAL_WAIT 5

Name of a file containing TRANSIMS format vehicle information
(locations, type, etc.)
CA_VEHICLE_FILE /home/transims/allstr-run/output/allstr.vehicles

CA_USE_PARTITIONED_ROUTE_FILES 0

CA_LATE_BOUNDARY_RECEPTION 1
CA_PARALLEL_LOG 0

TRANSIMS-LANL-1.0 – Files – May 1999 Page 196
LA-UR – 99-2579

CA_PARALLEL_IO_TEST_MODE 0
CA_PARALLEL_IO_TEST_INTERVAL 30

CA_OUTPUT_BUFFER_COUNT 32

CA_RTM_SAMPLE_INTERVAL 0

##################### TRANSIT PARAMETERS ####################

Name of a file containing TRANSIMS format transit route information
(list of stops for each route)
string
TRANSIT_ROUTE_FILE /home/transims/allstr-run/data/allstr.routes

Name of a file containing TRANSIMS format transit schedule information
(list of arrival time for each vehicle at each stop)
string
TRANSIT_SCHEDULE_FILE /home/transims/allstr-run/data/allstr.schedules

##################### PLAN PARAMETERS #######################

Name of a file containing TRANSIMS format legs
string
PLAN_FILE /home/transims/allstr-run/output/allstr.plans

##################### ROUTER PARAMETERS #####################

ROUTER_OUTPUT_PLAN_FILE /home/transims/allstr-run/output/allstr.plans
ROUTER_ACTIVITY_FILE /home/transims/allstr-run/output/allstr.activities
ROUTER_VEHICLE_FILE /home/transims/allstr-run/output/allstr.vehicles
ROUTER_MODE_MAP_FILE /home/transims/allstr-run/data/allstr.modes

ROUTER_MAXNFASIZE 5
ROUTER_MAX_DEGREE 15
ROUTER_INTERNAL_PLAN_SIZE 400
ROUTER_VERBOSE 2

If length < corr_thresh * dist, adjust the length
float
ROUTER_CORR 0.0

??
float
ROUTER_OVERDO 3.0

Backdating time of travel information ??
int
ROUTER_ZERO_BACKD 0

##################### LOGGING PARAMETERS ####################

LOG_LOG_CONFIG 0
LOG_LOAD_NETWORK 1
LOG_PARTITIONING 1
LOG_DISTRIBUTION 1
LOG_RUNTIMEMONITOR 0
LOG_CONTROL 0
LOG_TIMING 1
LOG_BOUNDARIES 0
LOG_ROUTING 1
LOG_ROUTING_DETAIL 1
LOG_TIMESTEP 1
LOG_TIMESTEP_DETAIL 1
LOG_PARALLEL 0
LOG_VEHICLES 1
LOG_MIGRATION 1
LOG_MIGRATION_DETAIL 1
LOG_TRANSIT 1
LOG_EMISSIONS 1
LOG_IO_DETAIL 0

##################### VISUALIZER PARAMETERS #################

int, will be single buffered if non-zero

TRANSIMS-LANL-1.0 – Files – May 1999 Page 197
LA-UR – 99-2579

VIS_SINGLE_BUFFERED 0

Name of a file containing batch commands (unused)
string
VIS_BATCH_FILE

The length of a box in meters
float
VIS_BOX_LENGTH 150.0

##################### PARTITIONING PARAMETERS ###############

PAR_PVM_ROOT /sw/Cvol/pvm3
PAR_PVM_ARCH SUN4SOL2
PAR_PVM_WAIT_FOR_DEAMON 20

PAR_MPI_ROOT /sw/Cvol/mpich
PAR_MPI_ARCH solaris
PAR_MPI_DEVICE ch_p4

PAR_MIN_CELLS_TO_SPLIT 10
PAR_SLAVES 2

if 1, use orthogonal bisection to distribute the network
otherwise, use the METIS graph partitioning library
int
PAR_USE_METIS_PARTITION 1
PAR_USE_OB_PARTITION 0

PAR_PARTITION_FILE /tmp/partition
PAR_SAVE_PARTITION 0

if 0 use (number of lanes) for edge weight, (length * number of lanes) for edge penalty
and 0 for node weights in the partitioning algorithm
otherwise, use the file named in RTM_FEEDBACK_FILE and RTM_PENALTY_FACTOR.
int
PAR_USE_RTM_FEEDBACK 0

Filename for edge and node weights for partitioning
File format is lines of the form:
0 Id Weight
1 Id Weight Penalty
The first line sets a node weight
the second line sets an edge weight: if penalty is -1, use current value *
RTM_PENALTY_FACTOR
otherwise use Penalty * RTM_PENALTY_FACTOR
string
PAR_RTM_FEEDBACK_FILE /tmp/rtm

See above for RTM_FEEDBACK_FILE
float > 0.0
PAR_RTM_PENALTY_FACTOR 100.0

PAR_REPORT_OUTGOING_LINK_TIME_ONLY 1

##################### SELECTOR PARAMETERS ###################

Only travelers whose (actual - expected) / expected
is greater than this will be affected by any operations
float > 0
SEL_FRUSTRATION_THRESH 1.5

Fraction of travelers to select for
just rerouting
reassigning activities
choosing a new mode preference
changing the time of activities
float, >= 0 and <= 1
SEL_REROUTE_FRAC 0.1
SEL_REASSIGN_FRAC 0.1
SEL_REMODE_FRAC 0.1
SEL_RETIME_FRAC 0.1

Name of files in which to place traveler ids
selected for each of the possible changes

TRANSIMS-LANL-1.0 – Files – May 1999 Page 198
LA-UR – 99-2579

string
SEL_REROUTE_FILE
SEL_REMODE_FILE
SEL_RETIME_FILE
SEL_REASSIGN_FILE

===
Local Variables:
tab-width:4
End:
===

TRANSIMS-LANL-1.0 – Files – May 1999 Page 199
LA-UR – 99-2579

14. LOGGING

The TRANSIMS logging interface is to be used for the logging output of all applications that will
be part of the TRANSIMS suite of software modules and will be integrated into the development
environment. Using a single interface allows the standardization of logging messages.

14.1 Terms

MSG_PRINT Normal informative message.

MSG_WARNING Warning that may need user attention but is most likely not to
corrupt the application results.

MSG_SEVERE_WARNING Warning that does not require the user to shut down the
application but will most likely result in corrupted output.

MSG_ERROR Actual error message that results in immediate termination of the
program.

14.2 Interface Functions

Each logging message is associated with a module passed in the parameter theSubSystem. There
are predefined modules for most subsystems in TRANSIMS (see IO/log.h for a list.)

There are four different message levels that are passed in the parameter theMessageLevel:

1) MSG_PRINT: This is a normal informative message. It does NOT describe a warning or an
error.

2) MSG_WARNING: This is a warning that may need user attention, but is most likely not to
corrupt the application results.

3) MSG_SEVERE_WARNING: This is a warning that does not require the user to shut down
the application but will most likely result in corrupted output.

4) MSG_ERROR: This is an actual error message that results in immediate termination of the
program.

The parameter Format contains the actual message. It is interpreted as a C-style printf(1)
format string that permits the passing of additional parameters after the format string. There is no
need to terminate the format string with a newline character, since that will be automatically added.

Notes:
1) Do not try to by-pass the interface since this may result in messages getting lost.
2) Refrain from using the strings “ERROR” or “WARNING” (or any other pattern listed in the

DEFINES-Reserved String Pattern section of the log.h file) in your messages. The interface
will add appropriate strings to your messages so that they can be identified.

3) Choose the message level with care since “harmless” levels such as MSG_PRINT or
MSG_WARNING may be deactivated when the application is run in production mode. Really
important messages should be of type MSG_SEVERE_WARNING or MSG_ERROR.

TRANSIMS-LANL-1.0 – Files – May 1999 Page 200
LA-UR – 99-2579

4) Do not make any assumption about where the logging output will end up. The default will be
standard output, but it will also be redirected to a file.

void
cMessage(enum TSubsystem theSubSystem, enum TMessageLevel
 theMessageLevel, const char * Format, …);

14.3 Files

Table 103: Logging library files.

Type File Name Description
Binary Files libTIO.a TRANSIMS Interfaces library
Source Files log.c Source for logging functions

log.h Logging interface functions source file

14.4 Examples

cMessage (SUB_CA, MSG_WARNING, “More vehicle (%d) than expected (%d)”,
 NrOfVehicle, NrOfExpectedVehicles;

TRANSIMS-LANL-1.0 – Files – May 1999 Page 201
LA-UR – 99-2579

15. REFERENCES

[BBM 96] R. J. Beckman, K. A. Baggerley, and M. D. McKay, Creating Synthetic
Baseline Populations, Statistics Group, Los Alamos National Laboratory,
Los Alamos, NM, 1996.

[Bl] J. Blodgett, “MABLE/GEOCORR Geographic Correspondence Engine,”
http://www.oseda.missouri.edu/plue/geocorr/doc/article.html.

[Ce 96] K. Cervenka, personal communication, 1996.

[Do 97] R. Donnelly, personal communication, 1997.

[GHA 88] Federal Highway Administration, Manual on Uniform Traffic Control
Devices, (Washington, D.C.: U.S. Government Printing Office, 1988).

[ITE 85] Institute of Transportation Engineers, Traffic Control Systems Handbook,
(Washington, D.C.: ITE Publications, 1985).

[ITE] Institute of Transportation Engineers, Traffic Detector Handbook,
(Washington, D.C.: ITE Publications, n.d.).

[MM 84] M. D. Meyer and E. J. Miller, Urban Transportation Planning, (New
York: McGraw-Hill, 1984).

[Or 93] F. L. Orcutt, Jr., The Traffic Signal Book, (Englewood Cliffs, New Jersey:
Prentice Hall, 1993).

[PP 93] C. S. Papacostas and P. D. Prevedouros, Transportation Engineering and
Planning, (Englewood Cliffs, New Jersey: Prentice Hall, 1993).

